Package eventbridge provides the API client, operations, and parameter types for Amazon EventBridge. Amazon EventBridge helps you to respond to state changes in your Amazon Web Services resources. When your resources change state, they automatically send events to an event stream. You can create rules that match selected events in the stream and route them to targets to take action. You can also use rules to take action on a predetermined schedule. For example, you can configure rules to: Automatically invoke an Lambda function to update DNS entries when an event notifies you that Amazon EC2 instance enters the running state. Direct specific API records from CloudTrail to an Amazon Kinesis data stream for detailed analysis of potential security or availability risks. Periodically invoke a built-in target to create a snapshot of an Amazon EBS volume. For more information about the features of Amazon EventBridge, see the Amazon EventBridge User Guide.
Package waf provides the API client, operations, and parameter types for AWS WAF. This is AWS WAF Classic documentation. For more information, see AWS WAF Classic in the developer guide. For the latest version of AWS WAF, use the AWS WAFV2 API and see the AWS WAF Developer Guide. With the latest version, AWS WAF has a single set of endpoints for regional and global use. This is the AWS WAF Classic API Reference for using AWS WAF Classic with Amazon CloudFront. The AWS WAF Classic actions and data types listed in the reference are available for protecting Amazon CloudFront distributions. You can use these actions and data types via the endpoint waf.amazonaws.com. This guide is for developers who need detailed information about the AWS WAF Classic API actions, data types, and errors. For detailed information about AWS WAF Classic features and an overview of how to use the AWS WAF Classic API, see the AWS WAF Classicin the developer guide.
Package graphql-go-tools is library to create GraphQL services using the go programming language. GraphQL is a query language for APIs and a runtime for fulfilling those queries with your existing data. GraphQL provides a complete and understandable description of the data in your API, gives clients the power to ask for exactly what they need and nothing more, makes it easier to evolve APIs over time, and enables powerful developer tools. Source: https://graphql.org This library is intended to be a set of low level building blocks to write high performance and secure GraphQL applications. Use cases could range from writing layer seven GraphQL proxies, firewalls, caches etc.. You would usually not use this library to write a GraphQL server yourself but to build tools for the GraphQL ecosystem. To achieve this goal the library has zero dependencies at its core functionality. It has a full implementation of the GraphQL AST and supports lexing, parsing, validation, normalization, introspection, query planning as well as query execution etc. With the execution package it's possible to write a fully functional GraphQL server that is capable to mediate between various protocols and formats. In it's current state you can use the following DataSources to resolve fields: - Static data (embed static data into a schema to extend a field in a simple way) - HTTP JSON APIs (combine multiple Restful APIs into one single GraphQL Endpoint, nesting is possible) - GraphQL APIs (you can combine multiple GraphQL APIs into one single GraphQL Endpoint, nesting is possible) - Webassembly/WASM Lambdas (e.g. resolve a field using a Rust lambda) If you're looking for a ready to use solution that has all this functionality packaged as a Gateway have a look at: https://github.com/jensneuse/graphql-gateway Created by Jens Neuse
ps provides an API for finding and listing processes in a platform-agnostic way. NOTE: If you're reading these docs online via GoDocs or some other system, you might only see the Unix docs. This project makes heavy use of platform-specific implementations. We recommend reading the source if you are interested.
Package gojsonq provides a simple, elegant and fast ODM like API to access/query JSON document. JSON document can be read from file, string or io.Reader. Accessing the value of json property or querying document is simple as the example below: For more details, see the documentation and examples.
Package acmpca provides the API client, operations, and parameter types for AWS Certificate Manager Private Certificate Authority. This is the Amazon Web Services Private Certificate Authority API Reference. It provides descriptions, syntax, and usage examples for each of the actions and data types involved in creating and managing a private certificate authority (CA) for your organization. The documentation for each action shows the API request parameters and the JSON response. Alternatively, you can use one of the Amazon Web Services SDKs to access an API that is tailored to the programming language or platform that you prefer. For more information, see Amazon Web Services SDKs. Each Amazon Web Services Private CA API operation has a quota that determines the number of times the operation can be called per second. Amazon Web Services Private CA throttles API requests at different rates depending on the operation. Throttling means that Amazon Web Services Private CA rejects an otherwise valid request because the request exceeds the operation's quota for the number of requests per second. When a request is throttled, Amazon Web Services Private CA returns a ThrottlingExceptionerror. Amazon Web Services Private CA does not guarantee a minimum request rate for APIs. To see an up-to-date list of your Amazon Web Services Private CA quotas, or to request a quota increase, log into your Amazon Web Services account and visit the Service Quotasconsole.
Package wafregional provides the API client, operations, and parameter types for AWS WAF Regional. This is AWS WAF Classic Regional documentation. For more information, see AWS WAF Classic in the developer guide. For the latest version of AWS WAF, use the AWS WAFV2 API and see the AWS WAF Developer Guide. With the latest version, AWS WAF has a single set of endpoints for regional and global use. This is the AWS WAF Regional Classic API Reference for using AWS WAF Classic with the AWS resources, Elastic Load Balancing (ELB) Application Load Balancers and API Gateway APIs. The AWS WAF Classic actions and data types listed in the reference are available for protecting Elastic Load Balancing (ELB) Application Load Balancers and API Gateway APIs. You can use these actions and data types by means of the endpoints listed in AWS Regions and Endpoints. This guide is for developers who need detailed information about the AWS WAF Classic API actions, data types, and errors. For detailed information about AWS WAF Classic features and an overview of how to use the AWS WAF Classic API, see the AWS WAF Classicin the developer guide.
Package identitystore provides the API client, operations, and parameter types for AWS SSO Identity Store. The Identity Store service used by IAM Identity Center provides a single place to retrieve all of your identities (users and groups). For more information, see the IAM Identity Center User Guide. This reference guide describes the identity store operations that you can call programmatically and includes detailed information about data types and errors. IAM Identity Center uses the sso and identitystore API namespaces.
Package beego provide a MVC framework beego: an open-source, high-performance, modular, full-stack web framework It is used for rapid development of RESTful APIs, web apps and backend services in Go. beego is inspired by Tornado, Sinatra and Flask with the added benefit of some Go-specific features such as interfaces and struct embedding. more information: http://beego.me
Package tgbotapi has functions and types used for interacting with the Telegram Bot API.
Package databasemigrationservice provides the API client, operations, and parameter types for AWS Database Migration Service. Database Migration Service (DMS) can migrate your data to and from the most widely used commercial and open-source databases such as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, MariaDB, Amazon Aurora, MySQL, and SAP Adaptive Server Enterprise (ASE). The service supports homogeneous migrations such as Oracle to Oracle, as well as heterogeneous migrations between different database platforms, such as Oracle to MySQL or SQL Server to PostgreSQL. For more information about DMS, see What Is Database Migration Service? in the Database Migration Service User Guide.
Package influxdb2 provides API for using InfluxDB client in Go. It's intended to use with InfluxDB 2 server. WriteAPI, QueryAPI and Health work also with InfluxDB 1.8
Package lightsail provides the API client, operations, and parameter types for Amazon Lightsail. Amazon Lightsail is the easiest way to get started with Amazon Web Services (Amazon Web Services) for developers who need to build websites or web applications. It includes everything you need to launch your project quickly - instances (virtual private servers), container services, storage buckets, managed databases, SSD-based block storage, static IP addresses, load balancers, content delivery network (CDN) distributions, DNS management of registered domains, and resource snapshots (backups) - for a low, predictable monthly price. You can manage your Lightsail resources using the Lightsail console, Lightsail API, Command Line Interface (CLI), or SDKs. For more information about Lightsail concepts and tasks, see the Amazon Lightsail Developer Guide. This API Reference provides detailed information about the actions, data types, parameters, and errors of the Lightsail service. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas of the Lightsail service, see Amazon Lightsail Endpoints and Quotasin the Amazon Web Services General Reference.
Package sesv2 provides the API client, operations, and parameter types for Amazon Simple Email Service. Amazon SESis an Amazon Web Services service that you can use to send email messages to your customers. If you're new to Amazon SES API v2, you might find it helpful to review the Amazon Simple Email Service Developer Guide. The Amazon SES Developer Guide provides information and code samples that demonstrate how to use Amazon SES API v2 features programmatically.
Package s3control provides the API client, operations, and parameter types for AWS S3 Control. actions.
Package grequests implements a friendly API over Go's existing net/http library
Package stripe provides the binding for Stripe REST APIs.
Package costexplorer provides the API client, operations, and parameter types for AWS Cost Explorer Service. You can use the Cost Explorer API to programmatically query your cost and usage data. You can query for aggregated data such as total monthly costs or total daily usage. You can also query for granular data. This might include the number of daily write operations for Amazon DynamoDB database tables in your production environment. The Cost Explorer API provides the following endpoint: For information about the costs that are associated with the Cost Explorer API, see Amazon Web Services Cost Management Pricing.
Package servicecatalog provides the API client, operations, and parameter types for AWS Service Catalog. Service Catalogenables organizations to create and manage catalogs of IT services that are approved for Amazon Web Services. To get the most out of this documentation, you should be familiar with the terminology discussed in Service Catalog Concepts.
Package keyring provides a uniform API over a range of desktop credential storage engines.
Package wafv2 provides the API client, operations, and parameter types for AWS WAFV2. This is the latest version of the WAF API, released in November, 2019. The names of the entities that you use to access this API, like endpoints and namespaces, all have the versioning information added, like "V2" or "v2", to distinguish from the prior version. We recommend migrating your resources to this version, because it has a number of significant improvements. If you used WAF prior to this release, you can't use this WAFV2 API to access any WAF resources that you created before. WAF Classic support will end on September 30, 2025. For information about WAF, including how to migrate your WAF Classic resources to this version, see the WAF Developer Guide. WAF is a web application firewall that lets you monitor the HTTP and HTTPS requests that are forwarded to an Amazon CloudFront distribution, Amazon API Gateway REST API, Application Load Balancer, AppSync GraphQL API, Amazon Cognito user pool, App Runner service, or Amazon Web Services Verified Access instance. WAF also lets you control access to your content, to protect the Amazon Web Services resource that WAF is monitoring. Based on conditions that you specify, such as the IP addresses that requests originate from or the values of query strings, the protected resource responds to requests with either the requested content, an HTTP 403 status code (Forbidden), or with a custom response. This API guide is for developers who need detailed information about WAF API actions, data types, and errors. For detailed information about WAF features and guidance for configuring and using WAF, see the WAF Developer Guide. You can make calls using the endpoints listed in WAF endpoints and quotas. For regional applications, you can use any of the endpoints in the list. A regional application can be an Application Load Balancer (ALB), an Amazon API Gateway REST API, an AppSync GraphQL API, an Amazon Cognito user pool, an App Runner service, or an Amazon Web Services Verified Access instance. For Amazon CloudFront applications, you must use the API endpoint listed for US East (N. Virginia): us-east-1. Alternatively, you can use one of the Amazon Web Services SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see Amazon Web Services SDKs.
Package schemaregistry provides a client for Confluent's Kafka Schema Registry REST API.
Gojenkins is a Jenkins Client in Go, that exposes the jenkins REST api in a more developer friendly way.
Package actionlint is the implementation of actionlint linter. It's a static checker for GitHub Actions workflow files. https://github.com/rhysd/actionlint actionlint is a command line tool but it also provides Go API for Go programs. It includes a workflow file parser built on top of go-yaml/yaml, lexer/parser/checker for expressions embedded by ${{ }} placeholder, popular actions data, available contexts information, etc. To run the linter, Linter is the struct which manages the entire linter lifecycle. Please see the first example. actionlint also provides the flexibility to add your own rules by implementing Rule interface. Please read the YourOwnRule example. The version is for the command line tool. So it does not represent the version of the library. It means that the library does not follow semantic versioning and any patch version bump may introduce some breaking changes. Minimum supported Go version is written in go.mod file in this library. That said, older Go versions are actually not tested on CI. Last two major Go versions are recommended because they're tested on CI. For example, when the latest Go version is v1.22, v1.21 and v1.22 are nice to use. https://github.com/rhysd/actionlint/blob/main/go.mod All documentations for actionlint can be found in the following page. https://github.com/rhysd/actionlint/tree/main/docs This library is provided under the MIT license. > Copyright (c) 2021 rhysd Full text can be found in the following page. https://github.com/rhysd/actionlint/blob/main/LICENSE.txt
Package guardduty provides the API client, operations, and parameter types for Amazon GuardDuty. Amazon GuardDuty is a continuous security monitoring service that analyzes and processes the following foundational data sources - VPC flow logs, Amazon Web Services CloudTrail management event logs, CloudTrail S3 data event logs, EKS audit logs, DNS logs, Amazon EBS volume data, runtime activity belonging to container workloads, such as Amazon EKS, Amazon ECS (including Amazon Web Services Fargate), and Amazon EC2 instances. It uses threat intelligence feeds, such as lists of malicious IPs and domains, and machine learning to identify unexpected, potentially unauthorized, and malicious activity within your Amazon Web Services environment. This can include issues like escalations of privileges, uses of exposed credentials, or communication with malicious IPs, domains, or presence of malware on your Amazon EC2 instances and container workloads. For example, GuardDuty can detect compromised EC2 instances and container workloads serving malware, or mining bitcoin. GuardDuty also monitors Amazon Web Services account access behavior for signs of compromise, such as unauthorized infrastructure deployments like EC2 instances deployed in a Region that has never been used, or unusual API calls like a password policy change to reduce password strength. GuardDuty informs you about the status of your Amazon Web Services environment by producing security findings that you can view in the GuardDuty console or through Amazon EventBridge. For more information, see the Amazon GuardDuty User Guide.
Package spotify provides utilties for interfacing with Spotify's Web API.
Package sagemaker provides the API client, operations, and parameter types for Amazon SageMaker Service. Provides APIs for creating and managing SageMaker resources. Other Resources: SageMaker Developer Guide Amazon Augmented AI Runtime API Reference
Package applicationautoscaling provides the API client, operations, and parameter types for Application Auto Scaling. With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon Neptune clusters Amazon SageMaker endpoint variants Amazon SageMaker inference components Amazon SageMaker serverless endpoint provisioned concurrency Spot Fleets (Amazon EC2) Pool of WorkSpaces Custom resources provided by your own applications or services To learn more about Application Auto Scaling, see the Application Auto Scaling User Guide. The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTargetAPI action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling.
Package mediastore provides the API client, operations, and parameter types for AWS Elemental MediaStore. An AWS Elemental MediaStore container is a namespace that holds folders and objects. You use a container endpoint to create, read, and delete objects.
Package route53resolver provides the API client, operations, and parameter types for Amazon Route 53 Resolver. When you create a VPC using Amazon VPC, you automatically get DNS resolution within the VPC from Route 53 Resolver. By default, Resolver answers DNS queries for VPC domain names such as domain names for EC2 instances or Elastic Load Balancing load balancers. Resolver performs recursive lookups against public name servers for all other domain names. You can also configure DNS resolution between your VPC and your network over a Direct Connect or VPN connection: DNS resolvers on your network can forward DNS queries to Resolver in a specified VPC. This allows your DNS resolvers to easily resolve domain names for Amazon Web Services resources such as EC2 instances or records in a Route 53 private hosted zone. For more information, see How DNS Resolvers on Your Network Forward DNS Queries to Route 53 Resolverin the Amazon Route 53 Developer Guide. You can configure Resolver to forward queries that it receives from EC2 instances in your VPCs to DNS resolvers on your network. To forward selected queries, you create Resolver rules that specify the domain names for the DNS queries that you want to forward (such as example.com), and the IP addresses of the DNS resolvers on your network that you want to forward the queries to. If a query matches multiple rules (example.com, acme.example.com), Resolver chooses the rule with the most specific match (acme.example.com) and forwards the query to the IP addresses that you specified in that rule. For more information, see How Route 53 Resolver Forwards DNS Queries from Your VPCs to Your Network in the Amazon Route 53 Developer Guide. Like Amazon VPC, Resolver is Regional. In each Region where you have VPCs, you can choose whether to forward queries from your VPCs to your network (outbound queries), from your network to your VPCs (inbound queries), or both.
Package anaconda provides structs and functions for accessing version 1.1 of the Twitter API. Successful API queries return native Go structs that can be used immediately, with no need for type assertions. If you already have the access token (and secret) for your user (Twitter provides this for your own account on the developer portal), creating the client is simple: Executing queries on an authenticated TwitterApi struct is simple. Certain endpoints allow separate optional parameter; if desired, these can be passed as the final parameter. Anaconda implements most of the endpoints defined in the Twitter API documentation: https://dev.twitter.com/docs/api/1.1. For clarity, in most cases, the function name is simply the name of the HTTP method and the endpoint (e.g., the endpoint `GET /friendships/incoming` is provided by the function `GetFriendshipsIncoming`). In a few cases, a shortened form has been chosen to make life easier (for example, retweeting is simply the function `Retweet`) More detailed information about the behavior of each particular endpoint can be found at the official Twitter API documentation.
Kiali NOTE! The Kiali API is not for public use and is not supported for any use outside of the Kiali UI itself. The API can and will change from version to version with no guarantee of backwards compatibility. To generate this API document: ``` ``` swagger:meta
Package ec2imds provides the API client for interacting with the Amazon EC2 Instance Metadata Service. See the EC2 IMDS user guide for more information on using the API. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
package shell implements a remote API interface for a running ipfs daemon
Package rolesanywhere provides the API client, operations, and parameter types for IAM Roles Anywhere. Identity and Access Management Roles Anywhere provides a secure way for your workloads such as servers, containers, and applications that run outside of Amazon Web Services to obtain temporary Amazon Web Services credentials. Your workloads can use the same IAM policies and roles you have for native Amazon Web Services applications to access Amazon Web Services resources. Using IAM Roles Anywhere eliminates the need to manage long-term credentials for workloads running outside of Amazon Web Services. To use IAM Roles Anywhere, your workloads must use X.509 certificates issued by their certificate authority (CA). You register the CA with IAM Roles Anywhere as a trust anchor to establish trust between your public key infrastructure (PKI) and IAM Roles Anywhere. If you don't manage your own PKI system, you can use Private Certificate Authority to create a CA and then use that to establish trust with IAM Roles Anywhere. This guide describes the IAM Roles Anywhere operations that you can call programmatically. For more information about IAM Roles Anywhere, see the IAM Roles Anywhere User Guide.
Package tcpproxy lets users build TCP proxies, optionally making routing decisions based on HTTP/1 Host headers and the SNI hostname in TLS connections. Typical usage: Calling Run (or Start) on a proxy also starts all the necessary listeners. For each accepted connection, the rules for that ipPort are matched, in order. If one matches (currently HTTP Host, SNI, or always), then the connection is handed to the target. The two predefined Target implementations are: 1) DialProxy, proxying to another address (use the To func to return a DialProxy value), 2) TargetListener, making the matched connection available via a net.Listener.Accept call. But Target is an interface, so you can also write your own. Note that tcpproxy does not do any TLS encryption or decryption. It only (via DialProxy) copies bytes around. The SNI hostname in the TLS header is unencrypted, for better or worse. This package makes no API stability promises. If you depend on it, vendor it.
color.go: Color API and implementation pp.go: API definitions. The core implementation is delegated to printer.go. printer.go: The actual pretty print implementation. Everything in this file should be private. sort.go: Implementation for sorting map keys
Package transcribe provides the API client, operations, and parameter types for Amazon Transcribe Service. Amazon Transcribe offers three main types of batch transcription: Standard, Medical, and Call Analytics. Standard transcriptions are the most common option. Refer to for details. Medical transcriptions are tailored to medical professionals and incorporate medical terms. A common use case for this service is transcribing doctor-patient dialogue into after-visit notes. Refer to for details. Call Analytics transcriptions are designed for use with call center audio on two different channels; if you're looking for insight into customer service calls, use this option. Refer to for details.
Package httpsnoop provides an easy way to capture http related metrics (i.e. response time, bytes written, and http status code) from your application's http.Handlers. Doing this requires non-trivial wrapping of the http.ResponseWriter interface, which is also exposed for users interested in a more low-level API.
Package azuremonitorreceiver scrapes Azure Monitor API for available metrics.
Package go-autorest provides an HTTP request client for use with Autorest-generated API client packages.
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Package fis provides the API client, operations, and parameter types for AWS Fault Injection Simulator. Amazon Web Services Fault Injection Service is a managed service that enables you to perform fault injection experiments on your Amazon Web Services workloads. For more information, see the Fault Injection Service User Guide.
Package gophercloud provides a multi-vendor interface to OpenStack-compatible clouds. The library has a three-level hierarchy: providers, services, and resources. Provider structs represent the service providers that offer and manage a collection of services. Examples of providers include: OpenStack, Rackspace, HP. These are defined like so: Service structs are specific to a provider and handle all of the logic and operations for a particular OpenStack service. Examples of services include: Compute, Object Storage, Block Storage. In order to define one, you need to pass in the parent provider, like so: Resource structs are the domain models that services make use of in order to work with and represent the state of API resources: Another convention is to return Result structs for API operations, which allow you to access the HTTP headers, response body, and associated errors with the network transaction. To get a resource struct, you then call the Extract method which is chained to the response.
Package swift provides an easy to use interface to Swift / Openstack Object Storage / Rackspace Cloud Files Most of the work is done through the Container*() and Object*() methods. All methods are safe to use concurrently in multiple go routines. As defined by http://docs.openstack.org/api/openstack-object-storage/1.0/content/Object_Versioning-e1e3230.html#d6e983 one can create a container which allows for version control of files. The suggested method is to create a version container for holding all non-current files, and a current container for holding the latest version that the file points to. The container and objects inside it can be used in the standard manner, however, pushing a file multiple times will result in it being copied to the version container and the new file put in it's place. If the current file is deleted, the previous file in the version container will replace it. This means that if a file is updated 5 times, it must be deleted 5 times to be completely removed from the system. This module specifically allows the enabling/disabling of Rackspace Cloud File CDN management on a container. This is specific to the Rackspace API and not Swift/Openstack, therefore it has been placed in a submodule. One can easily create a RsConnection and use it like the standard Connection to access and manipulate containers and objects.
Package medialive provides the API client, operations, and parameter types for AWS Elemental MediaLive. API for AWS Elemental MediaLive
Package chaincfg defines chain configuration parameters. In addition to the main Decred network, which is intended for the transfer of monetary value, there also exists two currently active standard networks: regression test and testnet (version 0). These networks are incompatible with each other (each sharing a different genesis block) and software should handle errors where input intended for one network is used on an application instance running on a different network. For library packages, chaincfg provides the ability to lookup chain parameters and encoding magics when passed a *Params. Older APIs not updated to the new convention of passing a *Params may lookup the parameters for a wire.DecredNet using ParamsForNet, but be aware that this usage is deprecated and will be removed from chaincfg in the future. For main packages, a (typically global) var may be assigned the address of one of the standard Param vars for use as the application's "active" network. When a network parameter is needed, it may then be looked up through this variable (either directly, or hidden in a library call). If an application does not use one of the three standard Decred networks, a new Params struct may be created which defines the parameters for the non-standard network. As a general rule of thumb, all network parameters should be unique to the network, but parameter collisions can still occur (unfortunately, this is the case with regtest and testnet sharing magics).
Package ipfscluster implements a wrapper for the IPFS deamon which allows to orchestrate pinning operations among several IPFS nodes. IPFS Cluster peers form a separate libp2p swarm. A Cluster peer uses multiple Cluster Components which perform different tasks like managing the underlying IPFS daemons, or providing APIs for external control.