Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get DNS message. A DNS message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. A custom TSIG implementation can be used. This requires additional code to perform any session establishment and signature generation/verification. The client must be configured with an implementation of the TsigProvider interface: Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/september/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines a new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (RFC 7871). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package certmagic automates the obtaining and renewal of TLS certificates, including TLS & HTTPS best practices such as robust OCSP stapling, caching, HTTP->HTTPS redirects, and more. Its high-level API serves your HTTP handlers over HTTPS if you simply give the domain name(s) and the http.Handler; CertMagic will create and run the HTTPS server for you, fully managing certificates during the lifetime of the server. Similarly, it can be used to start TLS listeners or return a ready-to-use tls.Config -- whatever layer you need TLS for, CertMagic makes it easy. See the HTTPS, Listen, and TLS functions for that. If you need more control, create a Cache using NewCache() and then make a Config using New(). You can then call Manage() on the config. But if you use this lower-level API, you'll have to be sure to solve the HTTP and TLS-ALPN challenges yourself (unless you disabled them or use the DNS challenge) by using the provided Config.GetCertificate function in your tls.Config and/or Config.HTTPChallangeHandler in your HTTP handler. See the package's README for more instruction.
Package certmagic automates the obtaining and renewal of TLS certificates, including TLS & HTTPS best practices such as robust OCSP stapling, caching, HTTP->HTTPS redirects, and more. Its high-level API serves your HTTP handlers over HTTPS if you simply give the domain name(s) and the http.Handler; CertMagic will create and run the HTTPS server for you, fully managing certificates during the lifetime of the server. Similarly, it can be used to start TLS listeners or return a ready-to-use tls.Config -- whatever layer you need TLS for, CertMagic makes it easy. See the HTTPS, Listen, and TLS functions for that. If you need more control, create a Cache using NewCache() and then make a Config using New(). You can then call Manage() on the config. But if you use this lower-level API, you'll have to be sure to solve the HTTP and TLS-ALPN challenges yourself (unless you disabled them or use the DNS challenge) by using the provided Config.GetCertificate function in your tls.Config and/or Config.HTTPChallangeHandler in your HTTP handler. See the package's README for more instruction.
Package route53 provides the API client, operations, and parameter types for Amazon Route 53. Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service. You can use Route 53 to:
Package lightsail provides the API client, operations, and parameter types for Amazon Lightsail. Amazon Lightsail is the easiest way to get started with Amazon Web Services (Amazon Web Services) for developers who need to build websites or web applications. It includes everything you need to launch your project quickly - instances (virtual private servers), container services, storage buckets, managed databases, SSD-based block storage, static IP addresses, load balancers, content delivery network (CDN) distributions, DNS management of registered domains, and resource snapshots (backups) - for a low, predictable monthly price. You can manage your Lightsail resources using the Lightsail console, Lightsail API, Command Line Interface (CLI), or SDKs. For more information about Lightsail concepts and tasks, see the Amazon Lightsail Developer Guide (https://lightsail.aws.amazon.com/ls/docs/en_us/articles/lightsail-how-to-set-up-access-keys-to-use-sdk-api-cli) . This API Reference provides detailed information about the actions, data types, parameters, and errors of the Lightsail service. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas of the Lightsail service, see Amazon Lightsail Endpoints and Quotas (https://docs.aws.amazon.com/general/latest/gr/lightsail.html) in the Amazon Web Services General Reference.
Package guardduty provides the API client, operations, and parameter types for Amazon GuardDuty. Amazon GuardDuty is a continuous security monitoring service that analyzes and processes the following data sources: VPC flow logs, Amazon Web Services CloudTrail management event logs, CloudTrail S3 data event logs, EKS audit logs, DNS logs, and Amazon EBS volume data. It uses threat intelligence feeds, such as lists of malicious IPs and domains, and machine learning to identify unexpected, potentially unauthorized, and malicious activity within your Amazon Web Services environment. This can include issues like escalations of privileges, uses of exposed credentials, or communication with malicious IPs, domains, or presence of malware on your Amazon EC2 instances and container workloads. For example, GuardDuty can detect compromised EC2 instances and container workloads serving malware, or mining bitcoin. GuardDuty also monitors Amazon Web Services account access behavior for signs of compromise, such as unauthorized infrastructure deployments like EC2 instances deployed in a Region that has never been used, or unusual API calls like a password policy change to reduce password strength. GuardDuty informs you about the status of your Amazon Web Services environment by producing security findings that you can view in the GuardDuty console or through Amazon EventBridge. For more information, see the Amazon GuardDuty User Guide (https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html) .
Package route53resolver provides the API client, operations, and parameter types for Amazon Route 53 Resolver. When you create a VPC using Amazon VPC, you automatically get DNS resolution within the VPC from Route 53 Resolver. By default, Resolver answers DNS queries for VPC domain names such as domain names for EC2 instances or Elastic Load Balancing load balancers. Resolver performs recursive lookups against public name servers for all other domain names. You can also configure DNS resolution between your VPC and your network over a Direct Connect or VPN connection: Forward DNS queries from resolvers on your network to Route 53 Resolver DNS resolvers on your network can forward DNS queries to Resolver in a specified VPC. This allows your DNS resolvers to easily resolve domain names for Amazon Web Services resources such as EC2 instances or records in a Route 53 private hosted zone. For more information, see How DNS Resolvers on Your Network Forward DNS Queries to Route 53 Resolver (https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver.html#resolver-overview-forward-network-to-vpc) in the Amazon Route 53 Developer Guide. Conditionally forward queries from a VPC to resolvers on your network You can configure Resolver to forward queries that it receives from EC2 instances in your VPCs to DNS resolvers on your network. To forward selected queries, you create Resolver rules that specify the domain names for the DNS queries that you want to forward (such as example.com), and the IP addresses of the DNS resolvers on your network that you want to forward the queries to. If a query matches multiple rules (example.com, acme.example.com), Resolver chooses the rule with the most specific match (acme.example.com) and forwards the query to the IP addresses that you specified in that rule. For more information, see How Route 53 Resolver Forwards DNS Queries from Your VPCs to Your Network (https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver.html#resolver-overview-forward-vpc-to-network) in the Amazon Route 53 Developer Guide. Like Amazon VPC, Resolver is Regional. In each Region where you have VPCs, you can choose whether to forward queries from your VPCs to your network (outbound queries), from your network to your VPCs (inbound queries), or both.
Package servicediscovery provides the API client, operations, and parameter types for AWS Cloud Map. Cloud Map With Cloud Map, you can configure public DNS, private DNS, or HTTP namespaces that your microservice applications run in. When an instance becomes available, you can call the Cloud Map API to register the instance with Cloud Map. For public or private DNS namespaces, Cloud Map automatically creates DNS records and an optional health check. Clients that submit public or private DNS queries, or HTTP requests, for the service receive an answer that contains up to eight healthy records.
Package transfer provides the API client, operations, and parameter types for AWS Transfer Family. Transfer Family is a fully managed service that enables the transfer of files over the File Transfer Protocol (FTP), File Transfer Protocol over SSL (FTPS), or Secure Shell (SSH) File Transfer Protocol (SFTP) directly into and out of Amazon Simple Storage Service (Amazon S3) or Amazon EFS. Additionally, you can use Applicability Statement 2 (AS2) to transfer files into and out of Amazon S3. Amazon Web Services helps you seamlessly migrate your file transfer workflows to Transfer Family by integrating with existing authentication systems, and providing DNS routing with Amazon Route 53 so nothing changes for your customers and partners, or their applications. With your data in Amazon S3, you can use it with Amazon Web Services for processing, analytics, machine learning, and archiving. Getting started with Transfer Family is easy since there is no infrastructure to buy and set up.
Package appmesh provides the API client, operations, and parameter types for AWS App Mesh. App Mesh is a service mesh based on the Envoy proxy that makes it easy to monitor and control microservices. App Mesh standardizes how your microservices communicate, giving you end-to-end visibility and helping to ensure high availability for your applications. App Mesh gives you consistent visibility and network traffic controls for every microservice in an application. You can use App Mesh with Amazon Web Services Fargate, Amazon ECS, Amazon EKS, Kubernetes on Amazon Web Services, and Amazon EC2. App Mesh supports microservice applications that use service discovery naming for their components. For more information about service discovery on Amazon ECS, see Service Discovery (https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-discovery.html) in the Amazon Elastic Container Service Developer Guide. Kubernetes kube-dns and coredns are supported. For more information, see DNS for Services and Pods (https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/) in the Kubernetes documentation.
Package libdns defines core interfaces that should be implemented by DNS provider clients. They are small and idiomatic Go interfaces with well-defined semantics. Records are described independently of any particular zone, a convention that grants Record structs portability across zones. As such, record names are partially qualified, i.e. relative to the zone. For example, an A record called "sub" in zone "example.com." represents a fully-qualified domain name (FQDN) of "sub.example.com.". Implementations should expect that input records conform to this standard, while also ensuring that output records do; adjustments to record names may need to be made before or after provider API calls, for example, to maintain consistency with all other libdns provider implementations. Helper functions are available in this package to convert between relative and absolute names. Although zone names are a required input, libdns does not coerce any particular representation of DNS zones; only records. Since zone name and records are separate inputs in libdns interfaces, it is up to the caller to pair a zone's name with its records in a way that works for them. All interface implementations must be safe for concurrent/parallel use. For example, if AppendRecords() is called at the same time and two API requests are made to the provider at the same time, the result of both requests must be visible after they both complete; if the provider does not synchronize the writing of the zone file and one request overwrites the other, then the client implementation must take care to synchronize on behalf of the incompetent provider. This synchronization need not be global; for example: the scope of synchronization might only need to be within the same zone, allowing multiple requests at once as long as all of them are for different zones. (Exact logic depends on the provider.)
Package certmagic automates the obtaining and renewal of TLS certificates, including TLS & HTTPS best practices such as robust OCSP stapling, caching, HTTP->HTTPS redirects, and more. Its high-level API serves your HTTP handlers over HTTPS if you simply give the domain name(s) and the http.Handler; CertMagic will create and run the HTTPS server for you, fully managing certificates during the lifetime of the server. Similarly, it can be used to start TLS listeners or return a ready-to-use tls.Config -- whatever layer you need TLS for, CertMagic makes it easy. See the HTTPS, Listen, and TLS functions for that. If you need more control, create a Cache using NewCache() and then make a Config using New(). You can then call Manage() on the config. But if you use this lower-level API, you'll have to be sure to solve the HTTP and TLS-ALPN challenges yourself (unless you disabled them or use the DNS challenge) by using the provided Config.GetCertificate function in your tls.Config and/or Config.HTTPChallangeHandler in your HTTP handler. See the package's README for more instruction.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package certmagic automates the obtaining and renewal of TLS certificates, including TLS & HTTPS best practices such as robust OCSP stapling, caching, HTTP->HTTPS redirects, and more. Its high-level API serves your HTTP handlers over HTTPS if you simply give the domain name(s) and the http.Handler; CertMagic will create and run the HTTPS server for you, fully managing certificates during the lifetime of the server. Similarly, it can be used to start TLS listeners or return a ready-to-use tls.Config -- whatever layer you need TLS for, CertMagic makes it easy. See the HTTPS, Listen, and TLS functions for that. If you need more control, create a Cache using NewCache() and then make a Config using New(). You can then call Manage() on the config. But if you use this lower-level API, you'll have to be sure to solve the HTTP and TLS-ALPN challenges yourself (unless you disabled them or use the DNS challenge) by using the provided Config.GetCertificate function in your tls.Config and/or Config.HTTPChallangeHandler in your HTTP handler. See the package's README for more instruction.
Package v1alpha1 contains managed resources for GCP dns services such as DnsRecords. +kubebuilder:object:generate=true +groupName=dns.gcp.crossplane.io +versionName=v1alpha1
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing AXFR/IXFR, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: For asynchronous queries it is easy to wrap Exchange() in a goroutine. Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to an request. Signature generation, signature verification and key generation are all supported. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines a standard RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: TRANSACTION SIGNATURE (TSIG) An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1 and HmacSHA256. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an AXFR (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 85.223.71.124 You can now read the records from the AXFR as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. 3.2.4 - Table Of Metavalues Used In Prerequisite Section The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. 3.4.2.6 - Table Of Metavalues Used In Update Section
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: If these "advanced" features are not needed, a simple UDP query can be send, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to an request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. see http://miek.nl/posts/2014/Sep/21/Private%20RRs%20and%20IDN%20in%20Go%20DNS/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package porkbun contains a client of the DNS API of Porkdun.
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: If these "advanced" features are not needed, a simple UDP query can be send, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. see http://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: If these "advanced" features are not needed, a simple UDP query can be send, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to an request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. 3.2.4 - Table Of Metavalues Used In Prerequisite Section The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. 3.4.2.6 - Table Of Metavalues Used In Update Section An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. see http://miek.nl/posts/2014/Sep/21/Private%20RRs%20and%20IDN%20in%20Go%20DNS/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package rc0go provides an official client for interaction with the rcode0 Anycast DNS API in Go. This client is highly inspired by google/go-github. The main advantage of the usage is that predefined and API-coordinated methods are already available and the further evolution of the rcode0 API is to be transparently aligned by the client so that the end users can focus on their own products or business logic without always having to maintain the interaction with the rcode0 API. Usage: Using your API token construct a new rcode0 client, then use the various services on the client to access different parts of the rcode0 Anycast DNS API. For example: Some code snippets are provided within the https://github.com/nic-at/rc0go/tree/master/example directory. As defined in rcode0 docs the API is structured in different groups. These are: Each of the groups is aimed to be implemented by a Go service object (f.e. rc0go.ZoneManagementService) which in turn provides the corresponding methods of the group. DNSSEC, however, is defined as separate service object. Each method contains the reference to original docs to maintain a consistent content. The API is rate limited. Additional client support will be added soon. Some endpoints (like adding a new zone to rcode0) return a 201 Created status code with a status response. Status response is defined in rc0go.StatusResponse struct and contains only two fields - status and message. Some requests (like listing managed zones or rrsets) support pagination. Pagination is defined in the rc0go.Page struct (with original data returned within rc0go.Page.Data field). Pagination options will be supported soon.
Package vpcinfo provides APIs to extract VPC information from DNS resolvers. The library abstract parsing and caching of VPC information resolved from TXT records, as configured by the terraform modules in this repository.
Package ripeatlas implements bindings for RIPE Atlas. The Atlaser is the interface to access RIPE Atlas and there are a few different ways to do so, for example read measurement results from a JSON file: See File for file access, Http for REST API access and Stream for Streaming API access.
Package certmagic automates the obtaining and renewal of TLS certificates, including TLS & HTTPS best practices such as robust OCSP stapling, caching, HTTP->HTTPS redirects, and more. Its high-level API serves your HTTP handlers over HTTPS if you simply give the domain name(s) and the http.Handler; CertMagic will create and run the HTTPS server for you, fully managing certificates during the lifetime of the server. Similarly, it can be used to start TLS listeners or return a ready-to-use tls.Config -- whatever layer you need TLS for, CertMagic makes it easy. See the HTTPS, Listen, and TLS functions for that. If you need more control, create a Cache using NewCache() and then make a Config using New(). You can then call Manage() on the config. But if you use this lower-level API, you'll have to be sure to solve the HTTP and TLS-ALPN challenges yourself (unless you disabled them or use the DNS challenge) by using the provided Config.GetCertificate function in your tls.Config and/or Config.HTTPChallangeHandler in your HTTP handler. See the package's README for more instruction.
Package xmpp provides functionality from the Extensible Messaging and Presence Protocol, sometimes known as "Jabber". This module is subdivided into several packages. This package provides functionality for establishing an XMPP session, feature negotiation (including an API for defining your own stream features), and handling events. Other important packages include the jid package, which provides an implementation of the XMPP address format, the mux package which provides an XMPP handler that can multiplex payloads to other handlers and functionality for creating your own multiplexers, and the stanza package which provides functionality for transmitting XMPP primitives and errors. There are 9 functions for establishing an XMPP session. Their names are matched by the regular expression: If "Dial" is present it means the function uses sane defaults to dial a TCP connection before negotiating an XMPP session on it. Most users will want to call DialClientSession or DialServerSession to create a client-to-server (c2s) or server-to-server (s2s) connection respectively. These methods are the most convenient way to quickly start a connection. If control over DNS or HTTP-based service discovery is desired, the user can use the dial package to create a connection and then use one of the other session negotiation functions for full control over session initialization. If "New" or "Dial" is present in the function name it indicates that the session is from the initiating entities perspective while "Receive" indicates the receiving entity. If "Client" or "Server" are present they indicate a C2S or S2S connection respectively, otherwise the function takes a Negotiator and an initial session state to determine the type of session to create. This also lets the user create the XMPP session over something other than a TCP socket; for example a Unix domain socket or an in-memory pipe. It even allows the use of a different session negotiation protocol altogether such as the WebSocket subprotocol from the websocket package, or the Jabber Component Protocol from the component package. The default Negotiator and related functions use a list of StreamFeature's to negotiate the state of the session. Implementations of the most commonly used features (StartTLS, SASL-based authentication, and resource binding) are provided. Custom stream features may be created using the StreamFeature struct. StreamFeatures defined in this module are safe for concurrent use by multiple goroutines and may be created once and then re-used. Unlike HTTP, the XMPP protocol is asynchronous, meaning that both clients and servers can accept and send requests at any time and responses are not always required or may be received out of order. This is accomplished with two XML streams: an input stream and an output stream. To receive XML on the input stream, Session provides the Serve method which takes a handler that has the ability to read incoming XML. If the full stream should be read it also provides the TokenReader method which takes control of the stream (preventing Serve from calling its handlers) and allows for full control over the incoming stream. To send XML on the output stream, Session has a TokenWriter method that returns a token encoder that holds a lock on the output stream until it is closed. Writing individual XML tokens can be tedious and error prone. The stanza package contains functions and structs that aid in the construction of message, presence and info/query (IQ) elements which have special semantics in XMPP and are known as "stanzas". There are 16 methods on Session used for transmitting stanzas and other events over the output stream. Their names are matched by the regular expression: There are also four methods specifically for sending IQs and handling their responses. Their names are matched by: If "Send" is present it means that the method copies one XML token stream into the output stream, while "Encode" indicates that it takes a value and marshals it into XML. If "IQ" is present it means that the stream or value contains an XMPP IQ and the method blocks waiting on a response. If "Element" is present it indicates that the stream or struct is a payload and not the full element to be transmitted and that it should be wrapped in the provided start element token or stanza. For SendIQ and related methods to correctly handle IQ responses, and to make the common case of polling for incoming XML on the input stream—and possibly writing to the output stream in response—easier, we need a long running goroutine. Session includes the Serve method for starting this processing. Serve provides a Handler with access to the stream but prevents it from advancing the stream beyond the current element and always advances the stream to the end of the element when the handler returns (even if the handler did not consume the entire element). It isn't always practical to put all of your logic for handling elements into a single function or method, so the mux package contains an XML multiplexer that can be used to match incoming payloads against a pattern and delegate them to individual handlers. Packages that implement extensions to the core XMPP protocol will often provide handlers that are compatible with types defined in the mux package, and options for registering them with the multiplexer.
Package certmagic automates the obtaining and renewal of TLS certificates, including TLS & HTTPS best practices such as robust OCSP stapling, caching, HTTP->HTTPS redirects, and more. Its high-level API serves your HTTP handlers over HTTPS if you simply give the domain name(s) and the http.Handler; CertMagic will create and run the HTTPS server for you, fully managing certificates during the lifetime of the server. Similarly, it can be used to start TLS listeners or return a ready-to-use tls.Config -- whatever layer you need TLS for, CertMagic makes it easy. See the HTTPS, Listen, and TLS functions for that. If you need more control, create a Cache using NewCache() and then make a Config using New(). You can then call Manage() on the config. But if you use this lower-level API, you'll have to be sure to solve the HTTP and TLS-ALPN challenges yourself (unless you disabled them or use the DNS challenge) by using the provided Config.GetCertificate function in your tls.Config and/or Config.HTTPChallangeHandler in your HTTP handler. See the package's README for more instruction.
Package dnssd implements a wrapper for Apple's C DNS Service Discovery API. The DNS Service Discovery API is part of the Apple Bonjour zero configuration networking stack. The API allows for network services to be registered, browsed and resolved without configuration via multicast DNS in the ".local" domain and with additional configuration in unicast DNS domains. A service consists of a name, type, host, port and a set of key-value pairs containing meta information. Bonjour is bundled with OS X and available for Windows via Bonjour Print Services for Windows¹, the Bonjour SDK for Windows² or bundled with iTunes. For other POSIX platforms Apple offer mDNSResponder³ as open-source, however the Avahi⁴ project is the de facto choice on most Linux and BSD systems. Although Avahi has a different API, it does offer a compatibility shim which covers a subset of the DNS Service Discovery API, and which this package largely sticks to. The DNS Service Discovery API is wrapped as follows: All operations require a callback be set. RegisterOp, BrowseOp and ResolveOp require a service type be set. QueryOp requires name, class and type be set. If an InterfaceIndex is not set the default value of InterfaceIndexAny is used which applies the operation to all network interfaces. For operations that take a domain, if no domain is set or the domain is set to an empty string the operation applies to all applicable DNS-SD domains. If a service is registered with an empty string as it's name, the local computer name (or hostname) will be substitued. If no host is specified a hostname for the local machine will be used. By default services will be renamed with a numeric suffix if a name collision occurs. Callbacks are executed in serial. If an error is supplied to a callback the operation will no longer be active and other arguments must be ignored.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get DNS message. A DNS message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. A custom TSIG implementation can be used. This requires additional code to perform any session establishment and signature generation/verification. The client must be configured with an implementation of the TsigProvider interface: Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/september/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines a new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (RFC 7871). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package godaddy implements methods for manipulating GoDaddy DNS records. based on GoDaddy Domains API https://developer.godaddy.com/doc/endpoint/domains#/v1
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing AXFR/IXFR, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: For asynchronous queries it is easy to wrap Exchange() in a goroutine. Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to an request. Signature generation, signature verification and key generation are all supported. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines a standard RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: TRANSACTION SIGNATURE (TSIG) An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1 and HmacSHA256. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an AXFR (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 85.223.71.124 You can now read the records from the AXFR as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. 3.2.4 - Table Of Metavalues Used In Prerequisite Section The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. 3.4.2.6 - Table Of Metavalues Used In Update Section
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing AXFR/IXFR, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: For asynchronous queries it is easy to wrap Exchange() in a goroutine. From a birds eye view a dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to an request. Signature generation, signature verification and key generation are all supported. Writing a DNSSEC validating resolver is hard, if you need something like that you might want to use the Unbound wrapper found at github.com/miekg/unbound . EDNS0 is an extension mechanism for the DNS defined in RFC 2671. It defines a standard RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: TRANSACTION SIGNATURE (TSIG) An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1 and HmacSHA256. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an AXFR (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 85.223.71.124 You can now read the records from the AXFR as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. 3.2.4 - Table Of Metavalues Used In Prerequisite Section The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. 3.4.2.6 - Table Of Metavalues Used In Update Section
Package freemyip contains a client of the DNS API of freemyip.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: If these "advanced" features are not needed, a simple UDP query can be send, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to an request. Signature generation, signature verification and key generation are all supported. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (RFC 6891). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1 and HmacSHA256. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. 3.2.4 - Table Of Metavalues Used In Prerequisite Section The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. 3.4.2.6 - Table Of Metavalues Used In Update Section
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get DNS message. A DNS message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. A custom TSIG implementation can be used. This requires additional code to perform any session establishment and signature generation/verification. The client must be configured with an implementation of the TsigProvider interface: Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/september/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines a new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (RFC 7871). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get DNS message. A DNS message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. A custom TSIG implementation can be used. This requires additional code to perform any session establishment and signature generation/verification. The client must be configured with an implementation of the TsigProvider interface: Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/september/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (RFC 7871). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package certmagic automates the obtaining and renewal of TLS certificates, including TLS & HTTPS best practices such as robust OCSP stapling, caching, HTTP->HTTPS redirects, and more. Its high-level API serves your HTTP handlers over HTTPS if you simply give the domain name(s) and the http.Handler; CertMagic will create and run the HTTPS server for you, fully managing certificates during the lifetime of the server. Similarly, it can be used to start TLS listeners or return a ready-to-use tls.Config -- whatever layer you need TLS for, CertMagic makes it easy. See the HTTPS, Listen, and TLS functions for that. If you need more control, create a Cache using NewCache() and then make a Config using New(). You can then call Manage() on the config. But if you use this lower-level API, you'll have to be sure to solve the HTTP and TLS-ALPN challenges yourself (unless you disabled them or use the DNS challenge) by using the provided Config.GetCertificate function in your tls.Config and/or Config.HTTPChallangeHandler in your HTTP handler. See the package's README for more instruction.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.