Package bolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. see more examples https://github.com/go-playground/validator/tree/master/_examples Validator is designed to be thread-safe and used as a singleton instance. It caches information about your struct and validations, in essence only parsing your validation tags once per struct type. Using multiple instances neglects the benefit of caching. The not thread-safe functions are explicitly marked as such in the documentation. Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only InvalidValidationError for bad validation input, nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not check if error is InvalidValidationError ( if necessary, most of the time it isn't ) type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom Validation functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the 'or' validation tags deparator. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rgb|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is useful if inside of your program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. Allows to skip the validation if the value is nil (same as omitempty, but only for the nil-values). This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. dive has some sub-tags, 'keys' & 'endkeys', please see the Keys & EndKeys section just below. Example #1 Example #2 Keys & EndKeys These are to be used together directly after the dive tag and tells the validator that anything between 'keys' and 'endkeys' applies to the keys of a map and not the values; think of it like the 'dive' tag, but for map keys instead of values. Multidimensional nesting is also supported, each level you wish to validate will require another 'keys' and 'endkeys' tag. These tags are only valid for maps. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For booleans ensures value is not false. For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value when using WithRequiredStructEnabled. The field under validation must be present and not empty only if all the other specified fields are equal to the value following the specified field. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must be present and not empty unless all the other specified fields are equal to the value following the specified field. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must be present and not empty only if any of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must be present and not empty only if all of the other specified fields are present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Example: The field under validation must be present and not empty only when any of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must be present and not empty only when all of the other specified fields are not present. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Example: The field under validation must not be present or not empty only if all the other specified fields are equal to the value following the specified field. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: The field under validation must not be present or empty unless all the other specified fields are equal to the value following the specified field. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For structs ensures value is not the zero value. Examples: This validates that the value is the default value and is almost the opposite of required. For numbers, length will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, len will ensure that the value is equal to the duration given in the parameter. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, max will ensure that the value is less than or equal to the duration given in the parameter. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, min will ensure that the value is greater than or equal to the duration given in the parameter. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, eq will ensure that the value is equal to the duration given in the parameter. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. Example #1 Example #2 (time.Duration) For time.Duration, ne will ensure that the value is not equal to the duration given in the parameter. For strings, ints, and uints, oneof will ensure that the value is one of the values in the parameter. The parameter should be a list of values separated by whitespace. Values may be strings or numbers. To match strings with spaces in them, include the target string between single quotes. Kind of like an 'enum'. Works the same as oneof but is case insensitive and therefore only accepts strings. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Example #3 (time.Duration) For time.Duration, gt will ensure that the value is greater than the duration given in the parameter. Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). Example #3 (time.Duration) For time.Duration, gte will ensure that the value is greater than or equal to the duration given in the parameter. For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Example #3 (time.Duration) For time.Duration, lt will ensure that the value is less than the duration given in the parameter. Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). Example #3 (time.Duration) For time.Duration, lte will ensure that the value is less than or equal to the duration given in the parameter. This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers, time.Duration and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers, time.Duration and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers, time.Duration and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers, time.Duration and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This does the same as contains except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. This does the same as excludes except for struct fields. It should only be used with string types. See the behavior of reflect.Value.String() for behavior on other types. For arrays & slices, unique will ensure that there are no duplicates. For maps, unique will ensure that there are no duplicate values. For slices of struct, unique will ensure that there are no duplicate values in a field of the struct specified via a parameter. This validates that a string value contains ASCII alpha characters only This validates that a string value contains ASCII alphanumeric characters only This validates that a string value contains unicode alpha characters only This validates that a string value contains unicode alphanumeric characters only This validates that a string value can successfully be parsed into a boolean with strconv.ParseBool This validates that a string value contains number values only. For integers or float it returns true. This validates that a string value contains a basic numeric value. basic excludes exponents etc... for integers or float it returns true. This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains only lowercase characters. An empty string is not a valid lowercase string. This validates that a string value contains only uppercase characters. An empty string is not a valid uppercase string. This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid E.164 Phone number https://en.wikipedia.org/wiki/E.164 (ex. +1123456789) This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all possibilities. This validates that a string value is valid JSON This validates that a string value is a valid JWT This validates that a string value contains a valid file path and that the file exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid file path and that the file exists on the machine and is an image. This is done using os.Stat and github.com/gabriel-vasile/mimetype This validates that a string value contains a valid file path but does not validate the existence of that file. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validates that a string value contains a valid URN according to the RFC 2141 spec. This validates that a string value contains a valid bas324 value. Although an empty string is valid base32 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value according the RFC4648 spec. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid base64 URL safe value, but without = padding, according the RFC4648 spec, section 3.2. Although an empty string is a valid base64 URL safe value, this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains a valid bitcoin address. The format of the string is checked to ensure it matches one of the three formats P2PKH, P2SH and performs checksum validation. Bitcoin Bech32 Address (segwit) This validates that a string value contains a valid bitcoin Bech32 address as defined by bip-0173 (https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki) Special thanks to Pieter Wuille for providing reference implementations. This validates that a string value contains a valid ethereum address. The format of the string is checked to ensure it matches the standard Ethereum address format. This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value starts with the supplied string value This validates that a string value ends with the supplied string value This validates that a string value does not start with the supplied string value This validates that a string value does not end with the supplied string value This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. Uppercase UUID values will not pass - use `uuid_rfc4122` instead. This validates that a string value contains a valid version 3 UUID. Uppercase UUID values will not pass - use `uuid3_rfc4122` instead. This validates that a string value contains a valid version 4 UUID. Uppercase UUID values will not pass - use `uuid4_rfc4122` instead. This validates that a string value contains a valid version 5 UUID. Uppercase UUID values will not pass - use `uuid5_rfc4122` instead. This validates that a string value contains a valid ULID value. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Address. This validates that a string value contains a valid v4 IP Address. This validates that a string value contains a valid v6 IP Address. This validates that a string value contains a valid CIDR Address. This validates that a string value contains a valid v4 CIDR Address. This validates that a string value contains a valid v6 CIDR Address. This validates that a string value contains a valid resolvable TCP Address. This validates that a string value contains a valid resolvable v4 TCP Address. This validates that a string value contains a valid resolvable v6 TCP Address. This validates that a string value contains a valid resolvable UDP Address. This validates that a string value contains a valid resolvable v4 UDP Address. This validates that a string value contains a valid resolvable v6 UDP Address. This validates that a string value contains a valid resolvable IP Address. This validates that a string value contains a valid resolvable v4 IP Address. This validates that a string value contains a valid resolvable v6 IP Address. This validates that a string value contains a valid Unix Address. This validates that a string value contains a valid MAC Address. Note: See Go's ParseMAC for accepted formats and types: This validates that a string value is a valid Hostname according to RFC 952 https://tools.ietf.org/html/rfc952 This validates that a string value is a valid Hostname according to RFC 1123 https://tools.ietf.org/html/rfc1123 Full Qualified Domain Name (FQDN) This validates that a string value contains a valid FQDN. This validates that a string value appears to be an HTML element tag including those described at https://developer.mozilla.org/en-US/docs/Web/HTML/Element This validates that a string value is a proper character reference in decimal or hexadecimal format This validates that a string value is percent-encoded (URL encoded) according to https://tools.ietf.org/html/rfc3986#section-2.1 This validates that a string value contains a valid directory and that it exists on the machine. This is done using os.Stat, which is a platform independent function. This validates that a string value contains a valid directory but does not validate the existence of that directory. This is done using os.Stat, which is a platform independent function. It is safest to suffix the string with os.PathSeparator if the directory may not exist at the time of validation. This validates that a string value contains a valid DNS hostname and port that can be used to validate fields typically passed to sockets and connections. This validates that a string value is a valid datetime based on the supplied datetime format. Supplied format must match the official Go time format layout as documented in https://golang.org/pkg/time/ This validates that a string value is a valid country code based on iso3166-1 alpha-2 standard. see: https://www.iso.org/iso-3166-country-codes.html This validates that a string value is a valid country code based on iso3166-1 alpha-3 standard. see: https://www.iso.org/iso-3166-country-codes.html This validates that a string value is a valid country code based on iso3166-1 alpha-numeric standard. see: https://www.iso.org/iso-3166-country-codes.html This validates that a string value is a valid BCP 47 language tag, as parsed by language.Parse. More information on https://pkg.go.dev/golang.org/x/text/language BIC (SWIFT code) This validates that a string value is a valid Business Identifier Code (SWIFT code), defined in ISO 9362. More information on https://www.iso.org/standard/60390.html This validates that a string value is a valid dns RFC 1035 label, defined in RFC 1035. More information on https://datatracker.ietf.org/doc/html/rfc1035 This validates that a string value is a valid time zone based on the time zone database present on the system. Although empty value and Local value are allowed by time.LoadLocation golang function, they are not allowed by this validator. More information on https://golang.org/pkg/time/#LoadLocation This validates that a string value is a valid semver version, defined in Semantic Versioning 2.0.0. More information on https://semver.org/ This validates that a string value is a valid cve id, defined in cve mitre. More information on https://cve.mitre.org/ This validates that a string value contains a valid credit card number using Luhn algorithm. This validates that a string or (u)int value contains a valid checksum using the Luhn algorithm. This validates that a string is a valid 24 character hexadecimal string or valid connection string. Example: This validates that a string value contains a valid cron expression. This validates that a string is valid for use with SpiceDb for the indicated purpose. If no purpose is given, a purpose of 'id' is assumed. Alias Validators and Tags NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: A collection of validation rules that are frequently needed but are more complex than the ones found in the baked in validators. A non standard validator must be registered manually like you would with your own custom validation functions. Example of registration and use: Here is a list of the current non standard validators: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package sqlx provides general purpose extensions to database/sql. It is intended to seamlessly wrap database/sql and provide convenience methods which are useful in the development of database driven applications. None of the underlying database/sql methods are changed. Instead all extended behavior is implemented through new methods defined on wrapper types. Additions include scanning into structs, named query support, rebinding queries for different drivers, convenient shorthands for common error handling and more.
Package migrate reads migrations from sources and runs them against databases. Sources are defined by the `source.Driver` and databases by the `database.Driver` interface. The driver interfaces are kept "dumb", all migration logic is kept in this package.
Package pq is a pure Go Postgres driver for the database/sql package. In most cases clients will use the database/sql package instead of using this package directly. For example: You can also connect to a database using a URL. For example: Similarly to libpq, when establishing a connection using pq you are expected to supply a connection string containing zero or more parameters. A subset of the connection parameters supported by libpq are also supported by pq. Additionally, pq also lets you specify run-time parameters (such as search_path or work_mem) directly in the connection string. This is different from libpq, which does not allow run-time parameters in the connection string, instead requiring you to supply them in the options parameter. For compatibility with libpq, the following special connection parameters are supported: Valid values for sslmode are: See http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING for more information about connection string parameters. Use single quotes for values that contain whitespace: A backslash will escape the next character in values: Note that the connection parameter client_encoding (which sets the text encoding for the connection) may be set but must be "UTF8", matching with the same rules as Postgres. It is an error to provide any other value. In addition to the parameters listed above, any run-time parameter that can be set at backend start time can be set in the connection string. For more information, see http://www.postgresql.org/docs/current/static/runtime-config.html. Most environment variables as specified at http://www.postgresql.org/docs/current/static/libpq-envars.html supported by libpq are also supported by pq. If any of the environment variables not supported by pq are set, pq will panic during connection establishment. Environment variables have a lower precedence than explicitly provided connection parameters. The pgpass mechanism as described in http://www.postgresql.org/docs/current/static/libpq-pgpass.html is supported, but on Windows PGPASSFILE must be specified explicitly. database/sql does not dictate any specific format for parameter markers in query strings, and pq uses the Postgres-native ordinal markers, as shown above. The same marker can be reused for the same parameter: pq does not support the LastInsertId() method of the Result type in database/sql. To return the identifier of an INSERT (or UPDATE or DELETE), use the Postgres RETURNING clause with a standard Query or QueryRow call: For more details on RETURNING, see the Postgres documentation: For additional instructions on querying see the documentation for the database/sql package. Parameters pass through driver.DefaultParameterConverter before they are handled by this package. When the binary_parameters connection option is enabled, []byte values are sent directly to the backend as data in binary format. This package returns the following types for values from the PostgreSQL backend: All other types are returned directly from the backend as []byte values in text format. pq may return errors of type *pq.Error which can be interrogated for error details: See the pq.Error type for details. You can perform bulk imports by preparing a statement returned by pq.CopyIn (or pq.CopyInSchema) in an explicit transaction (sql.Tx). The returned statement handle can then be repeatedly "executed" to copy data into the target table. After all data has been processed you should call Exec() once with no arguments to flush all buffered data. Any call to Exec() might return an error which should be handled appropriately, but because of the internal buffering an error returned by Exec() might not be related to the data passed in the call that failed. CopyIn uses COPY FROM internally. It is not possible to COPY outside of an explicit transaction in pq. Usage example: PostgreSQL supports a simple publish/subscribe model over database connections. See http://www.postgresql.org/docs/current/static/sql-notify.html for more information about the general mechanism. To start listening for notifications, you first have to open a new connection to the database by calling NewListener. This connection can not be used for anything other than LISTEN / NOTIFY. Calling Listen will open a "notification channel"; once a notification channel is open, a notification generated on that channel will effect a send on the Listener.Notify channel. A notification channel will remain open until Unlisten is called, though connection loss might result in some notifications being lost. To solve this problem, Listener sends a nil pointer over the Notify channel any time the connection is re-established following a connection loss. The application can get information about the state of the underlying connection by setting an event callback in the call to NewListener. A single Listener can safely be used from concurrent goroutines, which means that there is often no need to create more than one Listener in your application. However, a Listener is always connected to a single database, so you will need to create a new Listener instance for every database you want to receive notifications in. The channel name in both Listen and Unlisten is case sensitive, and can contain any characters legal in an identifier (see http://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS for more information). Note that the channel name will be truncated to 63 bytes by the PostgreSQL server. You can find a complete, working example of Listener usage at https://godoc.org/github.com/lib/pq/example/listen. If you need support for Kerberos authentication, add the following to your main package: This package is in a separate module so that users who don't need Kerberos don't have to download unnecessary dependencies. When imported, additional connection string parameters are supported:
Package badger implements an embeddable, simple and fast key-value database, written in pure Go. It is designed to be highly performant for both reads and writes simultaneously. Badger uses Multi-Version Concurrency Control (MVCC), and supports transactions. It runs transactions concurrently, with serializable snapshot isolation guarantees. Badger uses an LSM tree along with a value log to separate keys from values, hence reducing both write amplification and the size of the LSM tree. This allows LSM tree to be served entirely from RAM, while the values are served from SSD. Badger has the following main types: DB, Txn, Item and Iterator. DB contains keys that are associated with values. It must be opened with the appropriate options before it can be accessed. All operations happen inside a Txn. Txn represents a transaction, which can be read-only or read-write. Read-only transactions can read values for a given key (which are returned inside an Item), or iterate over a set of key-value pairs using an Iterator (which are returned as Item type values as well). Read-write transactions can also update and delete keys from the DB. See the examples for more usage details.
Package badger implements an embeddable, simple and fast key-value database, written in pure Go. It is designed to be highly performant for both reads and writes simultaneously. Badger uses Multi-Version Concurrency Control (MVCC), and supports transactions. It runs transactions concurrently, with serializable snapshot isolation guarantees. Badger uses an LSM tree along with a value log to separate keys from values, hence reducing both write amplification and the size of the LSM tree. This allows LSM tree to be served entirely from RAM, while the values are served from SSD. Badger has the following main types: DB, Txn, Item and Iterator. DB contains keys that are associated with values. It must be opened with the appropriate options before it can be accessed. All operations happen inside a Txn. Txn represents a transaction, which can be read-only or read-write. Read-only transactions can read values for a given key (which are returned inside an Item), or iterate over a set of key-value pairs using an Iterator (which are returned as Item type values as well). Read-write transactions can also update and delete keys from the DB. See the examples for more usage details.
Package sqlite3 provides interface to SQLite3 databases. This works as a driver for database/sql. Installation Currently, go-sqlite3 supports the following data types. You can write your own extension module for sqlite3. For example, below is an extension for a Regexp matcher operation. It needs to be built as a so/dll shared library. And you need to register the extension module like below. Then, you can use this extension. You can hook and inject your code when the connection is established by setting ConnectHook to get the SQLiteConn. You can also use database/sql.Conn.Raw (Go >= 1.13): If you want to register Go functions as SQLite extension functions you can make a custom driver by calling RegisterFunction from ConnectHook. You can then use the custom driver by passing its name to sql.Open. See the documentation of RegisterFunc for more details.
Package badger implements an embeddable, simple and fast key-value database, written in pure Go. It is designed to be highly performant for both reads and writes simultaneously. Badger uses Multi-Version Concurrency Control (MVCC), and supports transactions. It runs transactions concurrently, with serializable snapshot isolation guarantees. Badger uses an LSM tree along with a value log to separate keys from values, hence reducing both write amplification and the size of the LSM tree. This allows LSM tree to be served entirely from RAM, while the values are served from SSD. Badger has the following main types: DB, Txn, Item and Iterator. DB contains keys that are associated with values. It must be opened with the appropriate options before it can be accessed. All operations happen inside a Txn. Txn represents a transaction, which can be read-only or read-write. Read-only transactions can read values for a given key (which are returned inside an Item), or iterate over a set of key-value pairs using an Iterator (which are returned as Item type values as well). Read-write transactions can also update and delete keys from the DB. See the examples for more usage details.
Package cloud contains a library and tools for open cloud development in Go. The Go Cloud Development Kit (Go CDK) allows application developers to seamlessly deploy cloud applications on any combination of cloud providers. It does this by providing stable, idiomatic interfaces for common uses like storage and databases. Think `database/sql` for cloud products. At the core of the Go CDK are common "portable types", implemented on top of service-specific drivers for supported cloud services. For example, objects of the blob.Bucket portable type can be created using gcsblob.OpenBucket, s3blob.OpenBucket, or any other Go CDK driver. Then, the blob.Bucket can be used throughout your application without worrying about the underlying implementation. The Go CDK works well with a code generator called Wire (https://github.com/google/wire/blob/master/README.md). It creates human-readable code that only imports the cloud SDKs for drivers you use. This allows the Go CDK to grow to support any number of cloud services, without increasing compile times or binary sizes, and avoiding any side effects from `init()` functions. For non-reference documentation, see https://gocloud.dev/ See https://gocloud.dev/concepts/urls/ for a discussion of URLs in the Go CDK. See https://gocloud.dev/concepts/as/ for a discussion of how to write service-specific code with the Go CDK.
Package pgx is a PostgreSQL database driver. pgx provides lower level access to PostgreSQL than the standard database/sql. It remains as similar to the database/sql interface as possible while providing better speed and access to PostgreSQL specific features. Import github.com/jackc/pgx/v4/stdlib to use pgx as a database/sql compatible driver. The primary way of establishing a connection is with `pgx.Connect`. The database connection string can be in URL or DSN format. Both PostgreSQL settings and pgx settings can be specified here. In addition, a config struct can be created by `ParseConfig` and modified before establishing the connection with `ConnectConfig`. `*pgx.Conn` represents a single connection to the database and is not concurrency safe. Use sub-package pgxpool for a concurrency safe connection pool. pgx implements Query and Scan in the familiar database/sql style. pgx also implements QueryRow in the same style as database/sql. Use Exec to execute a query that does not return a result set. QueryFunc can be used to execute a callback function for every row. This is often easier to use than Query. pgx maps between all common base types directly between Go and PostgreSQL. In particular: pgx can map nulls in two ways. The first is package pgtype provides types that have a data field and a status field. They work in a similar fashion to database/sql. The second is to use a pointer to a pointer. pgx maps between int16, int32, int64, float32, float64, and string Go slices and the equivalent PostgreSQL array type. Go slices of native types do not support nulls, so if a PostgreSQL array that contains a null is read into a native Go slice an error will occur. The pgtype package includes many more array types for PostgreSQL types that do not directly map to native Go types. pgx includes built-in support to marshal and unmarshal between Go types and the PostgreSQL JSON and JSONB. pgx encodes from net.IPNet to and from inet and cidr PostgreSQL types. In addition, as a convenience pgx will encode from a net.IP; it will assume a /32 netmask for IPv4 and a /128 for IPv6. pgx includes support for the common data types like integers, floats, strings, dates, and times that have direct mappings between Go and SQL. In addition, pgx uses the github.com/jackc/pgtype library to support more types. See documention for that library for instructions on how to implement custom types. See example_custom_type_test.go for an example of a custom type for the PostgreSQL point type. pgx also includes support for custom types implementing the database/sql.Scanner and database/sql/driver.Valuer interfaces. If pgx does cannot natively encode a type and that type is a renamed type (e.g. type MyTime time.Time) pgx will attempt to encode the underlying type. While this is usually desired behavior it can produce surprising behavior if one the underlying type and the renamed type each implement database/sql interfaces and the other implements pgx interfaces. It is recommended that this situation be avoided by implementing pgx interfaces on the renamed type. Row values and composite types are represented as pgtype.Record (https://pkg.go.dev/github.com/jackc/pgtype?tab=doc#Record). It is possible to get values of your custom type by implementing DecodeBinary interface. Decoding into pgtype.Record first can simplify process by avoiding dealing with raw protocol directly. For example: []byte passed as arguments to Query, QueryRow, and Exec are passed unmodified to PostgreSQL. Transactions are started by calling Begin. The Tx returned from Begin also implements the Begin method. This can be used to implement pseudo nested transactions. These are internally implemented with savepoints. Use BeginTx to control the transaction mode. BeginFunc and BeginTxFunc are variants that begin a transaction, execute a function, and commit or rollback the transaction depending on the return value of the function. These can be simpler and less error prone to use. Prepared statements can be manually created with the Prepare method. However, this is rarely necessary because pgx includes an automatic statement cache by default. Queries run through the normal Query, QueryRow, and Exec functions are automatically prepared on first execution and the prepared statement is reused on subsequent executions. See ParseConfig for information on how to customize or disable the statement cache. Use CopyFrom to efficiently insert multiple rows at a time using the PostgreSQL copy protocol. CopyFrom accepts a CopyFromSource interface. If the data is already in a [][]interface{} use CopyFromRows to wrap it in a CopyFromSource interface. Or implement CopyFromSource to avoid buffering the entire data set in memory. When you already have a typed array using CopyFromSlice can be more convenient. CopyFrom can be faster than an insert with as few as 5 rows. pgx can listen to the PostgreSQL notification system with the `Conn.WaitForNotification` method. It blocks until a notification is received or the context is canceled. pgx defines a simple logger interface. Connections optionally accept a logger that satisfies this interface. Set LogLevel to control logging verbosity. Adapters for github.com/inconshreveable/log15, github.com/sirupsen/logrus, go.uber.org/zap, github.com/rs/zerolog, and the testing log are provided in the log directory. pgx is implemented on top of github.com/jackc/pgconn a lower level PostgreSQL driver. The Conn.PgConn() method can be used to access this lower layer. pgx is compatible with PgBouncer in two modes. One is when the connection has a statement cache in "describe" mode. The other is when the connection is using the simple protocol. This can be set with the PreferSimpleProtocol config option.
package bbolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
Package pgx is a PostgreSQL database driver. pgx provides lower level access to PostgreSQL than the standard database/sql. It remains as similar to the database/sql interface as possible while providing better speed and access to PostgreSQL specific features. Import github.com/jackc/pgx/stdlib to use pgx as a database/sql compatible driver. pgx implements Query and Scan in the familiar database/sql style. pgx also implements QueryRow in the same style as database/sql. Use Exec to execute a query that does not return a result set. Connection pool usage is explicit and configurable. In pgx, a connection can be created and managed directly, or a connection pool with a configurable maximum connections can be used. The connection pool offers an after connect hook that allows every connection to be automatically setup before being made available in the connection pool. It delegates methods such as QueryRow to an automatically checked out and released connection so you can avoid manually acquiring and releasing connections when you do not need that level of control. pgx maps between all common base types directly between Go and PostgreSQL. In particular: pgx can map nulls in two ways. The first is package pgtype provides types that have a data field and a status field. They work in a similar fashion to database/sql. The second is to use a pointer to a pointer. pgx maps between int16, int32, int64, float32, float64, and string Go slices and the equivalent PostgreSQL array type. Go slices of native types do not support nulls, so if a PostgreSQL array that contains a null is read into a native Go slice an error will occur. The pgtype package includes many more array types for PostgreSQL types that do not directly map to native Go types. pgx includes built-in support to marshal and unmarshal between Go types and the PostgreSQL JSON and JSONB. pgx encodes from net.IPNet to and from inet and cidr PostgreSQL types. In addition, as a convenience pgx will encode from a net.IP; it will assume a /32 netmask for IPv4 and a /128 for IPv6. pgx includes support for the common data types like integers, floats, strings, dates, and times that have direct mappings between Go and SQL. In addition, pgx uses the github.com/jackc/pgx/pgtype library to support more types. See documention for that library for instructions on how to implement custom types. See example_custom_type_test.go for an example of a custom type for the PostgreSQL point type. pgx also includes support for custom types implementing the database/sql.Scanner and database/sql/driver.Valuer interfaces. If pgx does cannot natively encode a type and that type is a renamed type (e.g. type MyTime time.Time) pgx will attempt to encode the underlying type. While this is usually desired behavior it can produce suprising behavior if one the underlying type and the renamed type each implement database/sql interfaces and the other implements pgx interfaces. It is recommended that this situation be avoided by implementing pgx interfaces on the renamed type. []byte passed as arguments to Query, QueryRow, and Exec are passed unmodified to PostgreSQL. Transactions are started by calling Begin or BeginEx. The BeginEx variant can create a transaction with a specified isolation level. Use CopyFrom to efficiently insert multiple rows at a time using the PostgreSQL copy protocol. CopyFrom accepts a CopyFromSource interface. If the data is already in a [][]interface{} use CopyFromRows to wrap it in a CopyFromSource interface. Or implement CopyFromSource to avoid buffering the entire data set in memory. CopyFrom can be faster than an insert with as few as 5 rows. pgx can listen to the PostgreSQL notification system with the WaitForNotification function. It takes a maximum time to wait for a notification. The pgx ConnConfig struct has a TLSConfig field. If this field is nil, then TLS will be disabled. If it is present, then it will be used to configure the TLS connection. This allows total configuration of the TLS connection. pgx has never explicitly supported Postgres < 9.6's `ssl_renegotiation` option. As of v3.3.0, it doesn't send `ssl_renegotiation: 0` either to support Redshift (https://github.com/jackc/pgx/pull/476). If you need TLS Renegotiation, consider supplying `ConnConfig.TLSConfig` with a non-zero `Renegotiation` value and if it's not the default on your server, set `ssl_renegotiation` via `ConnConfig.RuntimeParams`. pgx defines a simple logger interface. Connections optionally accept a logger that satisfies this interface. Set LogLevel to control logging verbosity. Adapters for github.com/inconshreveable/log15, github.com/sirupsen/logrus, and the testing log are provided in the log directory.
Package pgx is a PostgreSQL database driver. pgx provides a native PostgreSQL driver and can act as a database/sql driver. The native PostgreSQL interface is similar to the database/sql interface while providing better speed and access to PostgreSQL specific features. Use github.com/jackc/pgx/v5/stdlib to use pgx as a database/sql compatible driver. See that package's documentation for details. The primary way of establishing a connection is with pgx.Connect: The database connection string can be in URL or key/value format. Both PostgreSQL settings and pgx settings can be specified here. In addition, a config struct can be created by ParseConfig and modified before establishing the connection with ConnectConfig to configure settings such as tracing that cannot be configured with a connection string. *pgx.Conn represents a single connection to the database and is not concurrency safe. Use package github.com/jackc/pgx/v5/pgxpool for a concurrency safe connection pool. pgx implements Query in the familiar database/sql style. However, pgx provides generic functions such as CollectRows and ForEachRow that are a simpler and safer way of processing rows than manually calling defer rows.Close(), rows.Next(), rows.Scan, and rows.Err(). CollectRows can be used collect all returned rows into a slice. ForEachRow can be used to execute a callback function for every row. This is often easier than iterating over rows directly. pgx also implements QueryRow in the same style as database/sql. Use Exec to execute a query that does not return a result set. pgx uses the pgtype package to converting Go values to and from PostgreSQL values. It supports many PostgreSQL types directly and is customizable and extendable. User defined data types such as enums, domains, and composite types may require type registration. See that package's documentation for details. Transactions are started by calling Begin. The Tx returned from Begin also implements the Begin method. This can be used to implement pseudo nested transactions. These are internally implemented with savepoints. Use BeginTx to control the transaction mode. BeginTx also can be used to ensure a new transaction is created instead of a pseudo nested transaction. BeginFunc and BeginTxFunc are functions that begin a transaction, execute a function, and commit or rollback the transaction depending on the return value of the function. These can be simpler and less error prone to use. Prepared statements can be manually created with the Prepare method. However, this is rarely necessary because pgx includes an automatic statement cache by default. Queries run through the normal Query, QueryRow, and Exec functions are automatically prepared on first execution and the prepared statement is reused on subsequent executions. See ParseConfig for information on how to customize or disable the statement cache. Use CopyFrom to efficiently insert multiple rows at a time using the PostgreSQL copy protocol. CopyFrom accepts a CopyFromSource interface. If the data is already in a [][]any use CopyFromRows to wrap it in a CopyFromSource interface. Or implement CopyFromSource to avoid buffering the entire data set in memory. When you already have a typed array using CopyFromSlice can be more convenient. CopyFrom can be faster than an insert with as few as 5 rows. pgx can listen to the PostgreSQL notification system with the `Conn.WaitForNotification` method. It blocks until a notification is received or the context is canceled. pgx supports tracing by setting ConnConfig.Tracer. To combine several tracers you can use the multitracer.Tracer. In addition, the tracelog package provides the TraceLog type which lets a traditional logger act as a Tracer. For debug tracing of the actual PostgreSQL wire protocol messages see github.com/jackc/pgx/v5/pgproto3. github.com/jackc/pgx/v5/pgconn contains a lower level PostgreSQL driver roughly at the level of libpq. pgx.Conn in implemented on top of pgconn. The Conn.PgConn() method can be used to access this lower layer. By default pgx automatically uses prepared statements. Prepared statements are incompatible with PgBouncer. This can be disabled by setting a different QueryExecMode in ConnConfig.DefaultQueryExecMode.
Package migrate reads migrations from sources and runs them against databases. Sources are defined by the `source.Driver` and databases by the `database.Driver` interface. The driver interfaces are kept "dump", all migration logic is kept in this package.
Package spanner provides a client for reading and writing to Cloud Spanner databases. See the packages under admin for clients that operate on databases and instances. See https://cloud.google.com/spanner/docs/getting-started/go/ for an introduction to Cloud Spanner and additional help on using this API. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. To start working with this package, create a client that refers to the database of interest: Remember to close the client after use to free up the sessions in the session pool. To use an emulator with this library, you can set the SPANNER_EMULATOR_HOST environment variable to the address at which your emulator is running. This will send requests to that address instead of to Cloud Spanner. You can then create and use a client as usual: Two Client methods, Apply and Single, work well for simple reads and writes. As a quick introduction, here we write a new row to the database and read it back: All the methods used above are discussed in more detail below. Every Cloud Spanner row has a unique key, composed of one or more columns. Construct keys with a literal of type Key: The keys of a Cloud Spanner table are ordered. You can specify ranges of keys using the KeyRange type: By default, a KeyRange includes its start key but not its end key. Use the Kind field to specify other boundary conditions: A KeySet represents a set of keys. A single Key or KeyRange can act as a KeySet. Use the KeySets function to build the union of several KeySets: AllKeys returns a KeySet that refers to all the keys in a table: All Cloud Spanner reads and writes occur inside transactions. There are two types of transactions, read-only and read-write. Read-only transactions cannot change the database, do not acquire locks, and may access either the current database state or states in the past. Read-write transactions can read the database before writing to it, and always apply to the most recent database state. The simplest and fastest transaction is a ReadOnlyTransaction that supports a single read operation. Use Client.Single to create such a transaction. You can chain the call to Single with a call to a Read method. When you only want one row whose key you know, use ReadRow. Provide the table name, key, and the columns you want to read: Read multiple rows with the Read method. It takes a table name, KeySet, and list of columns: Read returns a RowIterator. You can call the Do method on the iterator and pass a callback: RowIterator also follows the standard pattern for the Google Cloud Client Libraries: Always call Stop when you finish using an iterator this way, whether or not you iterate to the end. (Failing to call Stop could lead you to exhaust the database's session quota.) To read rows with an index, use ReadUsingIndex. The most general form of reading uses SQL statements. Construct a Statement with NewStatement, setting any parameters using the Statement's Params map: You can also construct a Statement directly with a struct literal, providing your own map of parameters. Use the Query method to run the statement and obtain an iterator: Once you have a Row, via an iterator or a call to ReadRow, you can extract column values in several ways. Pass in a pointer to a Go variable of the appropriate type when you extract a value. You can extract by column position or name: You can extract all the columns at once: Or you can define a Go struct that corresponds to your columns, and extract into that: For Cloud Spanner columns that may contain NULL, use one of the NullXXX types, like NullString: To perform more than one read in a transaction, use ReadOnlyTransaction: You must call Close when you are done with the transaction. Cloud Spanner read-only transactions conceptually perform all their reads at a single moment in time, called the transaction's read timestamp. Once a read has started, you can call ReadOnlyTransaction's Timestamp method to obtain the read timestamp. By default, a transaction will pick the most recent time (a time where all previously committed transactions are visible) for its reads. This provides the freshest data, but may involve some delay. You can often get a quicker response if you are willing to tolerate "stale" data. You can control the read timestamp selected by a transaction by calling the WithTimestampBound method on the transaction before using it. For example, to perform a query on data that is at most one minute stale, use See the documentation of TimestampBound for more details. To write values to a Cloud Spanner database, construct a Mutation. The spanner package has functions for inserting, updating and deleting rows. Except for the Delete methods, which take a Key or KeyRange, each mutation-building function comes in three varieties. One takes lists of columns and values along with the table name: One takes a map from column names to values: And the third accepts a struct value, and determines the columns from the struct field names: To apply a list of mutations to the database, use Apply: If you need to read before writing in a single transaction, use a ReadWriteTransaction. ReadWriteTransactions may be aborted automatically by the backend and need to be retried. You pass in a function to ReadWriteTransaction, and the client will handle the retries automatically. Use the transaction's BufferWrite method to buffer mutations, which will all be executed at the end of the transaction: Cloud Spanner STRUCT (aka STRUCT) values (https://cloud.google.com/spanner/docs/data-types#struct-type) can be represented by a Go struct value. A proto StructType is built from the field types and field tag information of the Go struct. If a field in the struct type definition has a "spanner:<field_name>" tag, then the value of the "spanner" key in the tag is used as the name for that field in the built StructType, otherwise the field name in the struct definition is used. To specify a field with an empty field name in a Cloud Spanner STRUCT type, use the `spanner:""` tag annotation against the corresponding field in the Go struct's type definition. A STRUCT value can contain STRUCT-typed and Array-of-STRUCT typed fields and these can be specified using named struct-typed and []struct-typed fields inside a Go struct. However, embedded struct fields are not allowed. Unexported struct fields are ignored. NULL STRUCT values in Cloud Spanner are typed. A nil pointer to a Go struct value can be used to specify a NULL STRUCT value of the corresponding StructType. Nil and empty slices of a Go STRUCT type can be used to specify NULL and empty array values respectively of the corresponding StructType. A slice of pointers to a Go struct type can be used to specify an array of NULL-able STRUCT values. Spanner supports DML statements like INSERT, UPDATE and DELETE. Use ReadWriteTransaction.Update to run DML statements. It returns the number of rows affected. (You can call use ReadWriteTransaction.Query with a DML statement. The first call to Next on the resulting RowIterator will return iterator.Done, and the RowCount field of the iterator will hold the number of affected rows.) For large databases, it may be more efficient to partition the DML statement. Use client.PartitionedUpdate to run a DML statement in this way. Not all DML statements can be partitioned. This client has been instrumented to use OpenCensus tracing (http://opencensus.io). To enable tracing, see "Enabling Tracing for a Program" at https://godoc.org/go.opencensus.io/trace. OpenCensus tracing requires Go 1.8 or higher.
Package sqlmock is a mock library implementing sql driver. Which has one and only purpose - to simulate any sql driver behavior in tests, without needing a real database connection. It helps to maintain correct **TDD** workflow. It does not require any modifications to your source code in order to test and mock database operations. Supports concurrency and multiple database mocking. The driver allows to mock any sql driver method behavior.
Package firestore provides a client for reading and writing to a Cloud Firestore database. See https://cloud.google.com/firestore/docs for an introduction to Cloud Firestore and additional help on using the Firestore API. See https://godoc.org/cloud.google.com/go for authentication, timeouts, connection pooling and similar aspects of this package. Note: you can't use both Cloud Firestore and Cloud Datastore in the same project. To start working with this package, create a client with a project ID: In Firestore, documents are sets of key-value pairs, and collections are groups of documents. A Firestore database consists of a hierarchy of alternating collections and documents, referred to by slash-separated paths like "States/California/Cities/SanFrancisco". This client is built around references to collections and documents. CollectionRefs and DocumentRefs are lightweight values that refer to the corresponding database entities. Creating a ref does not involve any network traffic. Use DocumentRef.Get to read a document. The result is a DocumentSnapshot. Call its Data method to obtain the entire document contents as a map. You can also obtain a single field with DataAt, or extract the data into a struct with DataTo. With the type definition we can extract the document's data into a value of type State: Note that this client supports struct tags beginning with "firestore:" that work like the tags of the encoding/json package, letting you rename fields, ignore them, or omit their values when empty. To retrieve multiple documents from their references in a single call, use Client.GetAll. For writing individual documents, use the methods on DocumentReference. Create creates a new document. The first return value is a WriteResult, which contains the time at which the document was updated. Create fails if the document exists. Another method, Set, either replaces an existing document or creates a new one. To update some fields of an existing document, use Update. It takes a list of paths to update and their corresponding values. Use DocumentRef.Delete to delete a document. You can condition Deletes or Updates on when a document was last changed. Specify these preconditions as an option to a Delete or Update method. The check and the write happen atomically with a single RPC. Here we update a doc only if it hasn't changed since we read it. You could also do this with a transaction. To perform multiple writes at once, use a WriteBatch. Its methods chain for convenience. WriteBatch.Commit sends the collected writes to the server, where they happen atomically. You can use SQL to select documents from a collection. Begin with the collection, and build up a query using Select, Where and other methods of Query. Supported operators include '<', '<=', '>', '>=', '==', 'in', 'array-contains', and 'array-contains-any'. Call the Query's Documents method to get an iterator, and use it like the other Google Cloud Client iterators. To get all the documents in a collection, you can use the collection itself as a query. Firestore supports similarity search over embedding vectors. See Query.FindNearest for details. You can partition the documents of a Collection Group allowing for smaller subqueries. You can also Serialize/Deserialize queries making it possible to run/stream the queries elsewhere; another process or machine for instance. Use a transaction to execute reads and writes atomically. All reads must happen before any writes. Transaction creation, commit, rollback and retry are handled for you by the Client.RunTransaction method; just provide a function and use the read and write methods of the Transaction passed to it. This package supports the Cloud Firestore emulator, which is useful for testing and development. Environment variables are used to indicate that Firestore traffic should be directed to the emulator instead of the production Firestore service. To install and run the emulator and its environment variables, see the documentation at https://cloud.google.com/sdk/gcloud/reference/beta/emulators/firestore/. Once the emulator is running, set FIRESTORE_EMULATOR_HOST to the API endpoint.
Package gocql implements a fast and robust Cassandra driver for the Go programming language. Pass a list of initial node IP addresses to NewCluster to create a new cluster configuration: Port can be specified as part of the address, the above is equivalent to: It is recommended to use the value set in the Cassandra config for broadcast_address or listen_address, an IP address not a domain name. This is because events from Cassandra will use the configured IP address, which is used to index connected hosts. If the domain name specified resolves to more than 1 IP address then the driver may connect multiple times to the same host, and will not mark the node being down or up from events. Then you can customize more options (see ClusterConfig): The driver tries to automatically detect the protocol version to use if not set, but you might want to set the protocol version explicitly, as it's not defined which version will be used in certain situations (for example during upgrade of the cluster when some of the nodes support different set of protocol versions than other nodes). The driver advertises the module name and version in the STARTUP message, so servers are able to detect the version. If you use replace directive in go.mod, the driver will send information about the replacement module instead. When ready, create a session from the configuration. Don't forget to Close the session once you are done with it: CQL protocol uses a SASL-based authentication mechanism and so consists of an exchange of server challenges and client response pairs. The details of the exchanged messages depend on the authenticator used. To use authentication, set ClusterConfig.Authenticator or ClusterConfig.AuthProvider. PasswordAuthenticator is provided to use for username/password authentication: It is possible to secure traffic between the client and server with TLS. To use TLS, set the ClusterConfig.SslOpts field. SslOptions embeds *tls.Config so you can set that directly. There are also helpers to load keys/certificates from files. Warning: Due to historical reasons, the SslOptions is insecure by default, so you need to set EnableHostVerification to true if no Config is set. Most users should set SslOptions.Config to a *tls.Config. SslOptions and Config.InsecureSkipVerify interact as follows: For example: To route queries to local DC first, use DCAwareRoundRobinPolicy. For example, if the datacenter you want to primarily connect is called dc1 (as configured in the database): The driver can route queries to nodes that hold data replicas based on partition key (preferring local DC). Note that TokenAwareHostPolicy can take options such as gocql.ShuffleReplicas and gocql.NonLocalReplicasFallback. We recommend running with a token aware host policy in production for maximum performance. The driver can only use token-aware routing for queries where all partition key columns are query parameters. For example, instead of use The DCAwareRoundRobinPolicy can be replaced with RackAwareRoundRobinPolicy, which takes two parameters, datacenter and rack. Instead of dividing hosts with two tiers (local datacenter and remote datacenters) it divides hosts into three (the local rack, the rest of the local datacenter, and everything else). RackAwareRoundRobinPolicy can be combined with TokenAwareHostPolicy in the same way as DCAwareRoundRobinPolicy. Create queries with Session.Query. Query values must not be reused between different executions and must not be modified after starting execution of the query. To execute a query without reading results, use Query.Exec: Single row can be read by calling Query.Scan: Multiple rows can be read using Iter.Scanner: See Example for complete example. The driver automatically prepares DML queries (SELECT/INSERT/UPDATE/DELETE/BATCH statements) and maintains a cache of prepared statements. CQL protocol does not support preparing other query types. When using CQL protocol >= 4, it is possible to use gocql.UnsetValue as the bound value of a column. This will cause the database to ignore writing the column. The main advantage is the ability to keep the same prepared statement even when you don't want to update some fields, where before you needed to make another prepared statement. Session is safe to use from multiple goroutines, so to execute multiple concurrent queries, just execute them from several worker goroutines. Gocql provides synchronously-looking API (as recommended for Go APIs) and the queries are executed asynchronously at the protocol level. Null values are are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string variable instead of string. See Example_nulls for full example. The driver reuses backing memory of slices when unmarshalling. This is an optimization so that a buffer does not need to be allocated for every processed row. However, you need to be careful when storing the slices to other memory structures. When you want to save the data for later use, pass a new slice every time. A common pattern is to declare the slice variable within the scanner loop: The driver supports paging of results with automatic prefetch, see ClusterConfig.PageSize, Session.SetPrefetch, Query.PageSize, and Query.Prefetch. It is also possible to control the paging manually with Query.PageState (this disables automatic prefetch). Manual paging is useful if you want to store the page state externally, for example in a URL to allow users browse pages in a result. You might want to sign/encrypt the paging state when exposing it externally since it contains data from primary keys. Paging state is specific to the CQL protocol version and the exact query used. It is meant as opaque state that should not be modified. If you send paging state from different query or protocol version, then the behaviour is not defined (you might get unexpected results or an error from the server). For example, do not send paging state returned by node using protocol version 3 to a node using protocol version 4. Also, when using protocol version 4, paging state between Cassandra 2.2 and 3.0 is incompatible (https://issues.apache.org/jira/browse/CASSANDRA-10880). The driver does not check whether the paging state is from the same protocol version/statement. You might want to validate yourself as this could be a problem if you store paging state externally. For example, if you store paging state in a URL, the URLs might become broken when you upgrade your cluster. Call Query.PageState(nil) to fetch just the first page of the query results. Pass the page state returned by Iter.PageState to Query.PageState of a subsequent query to get the next page. If the length of slice returned by Iter.PageState is zero, there are no more pages available (or an error occurred). Using too low values of PageSize will negatively affect performance, a value below 100 is probably too low. While Cassandra returns exactly PageSize items (except for last page) in a page currently, the protocol authors explicitly reserved the right to return smaller or larger amount of items in a page for performance reasons, so don't rely on the page having the exact count of items. See Example_paging for an example of manual paging. There are certain situations when you don't know the list of columns in advance, mainly when the query is supplied by the user. Iter.Columns, Iter.RowData, Iter.MapScan and Iter.SliceMap can be used to handle this case. See Example_dynamicColumns. The CQL protocol supports sending batches of DML statements (INSERT/UPDATE/DELETE) and so does gocql. Use Session.NewBatch to create a new batch and then fill-in details of individual queries. Then execute the batch with Session.ExecuteBatch. Logged batches ensure atomicity, either all or none of the operations in the batch will succeed, but they have overhead to ensure this property. Unlogged batches don't have the overhead of logged batches, but don't guarantee atomicity. Updates of counters are handled specially by Cassandra so batches of counter updates have to use CounterBatch type. A counter batch can only contain statements to update counters. For unlogged batches it is recommended to send only single-partition batches (i.e. all statements in the batch should involve only a single partition). Multi-partition batch needs to be split by the coordinator node and re-sent to correct nodes. With single-partition batches you can send the batch directly to the node for the partition without incurring the additional network hop. It is also possible to pass entire BEGIN BATCH .. APPLY BATCH statement to Query.Exec. There are differences how those are executed. BEGIN BATCH statement passed to Query.Exec is prepared as a whole in a single statement. Session.ExecuteBatch prepares individual statements in the batch. If you have variable-length batches using the same statement, using Session.ExecuteBatch is more efficient. See Example_batch for an example. Query.ScanCAS or Query.MapScanCAS can be used to execute a single-statement lightweight transaction (an INSERT/UPDATE .. IF statement) and reading its result. See example for Query.MapScanCAS. Multiple-statement lightweight transactions can be executed as a logged batch that contains at least one conditional statement. All the conditions must return true for the batch to be applied. You can use Session.ExecuteBatchCAS and Session.MapExecuteBatchCAS when executing the batch to learn about the result of the LWT. See example for Session.MapExecuteBatchCAS. Queries can be marked as idempotent. Marking the query as idempotent tells the driver that the query can be executed multiple times without affecting its result. Non-idempotent queries are not eligible for retrying nor speculative execution. Idempotent queries are retried in case of errors based on the configured RetryPolicy. Queries can be retried even before they fail by setting a SpeculativeExecutionPolicy. The policy can cause the driver to retry on a different node if the query is taking longer than a specified delay even before the driver receives an error or timeout from the server. When a query is speculatively executed, the original execution is still executing. The two parallel executions of the query race to return a result, the first received result will be returned. UDTs can be mapped (un)marshaled from/to map[string]interface{} a Go struct (or a type implementing UDTUnmarshaler, UDTMarshaler, Unmarshaler or Marshaler interfaces). For structs, cql tag can be used to specify the CQL field name to be mapped to a struct field: See Example_userDefinedTypesMap, Example_userDefinedTypesStruct, ExampleUDTMarshaler, ExampleUDTUnmarshaler. It is possible to provide observer implementations that could be used to gather metrics: CQL protocol also supports tracing of queries. When enabled, the database will write information about internal events that happened during execution of the query. You can use Query.Trace to request tracing and receive the session ID that the database used to store the trace information in system_traces.sessions and system_traces.events tables. NewTraceWriter returns an implementation of Tracer that writes the events to a writer. Gathering trace information might be essential for debugging and optimizing queries, but writing traces has overhead, so this feature should not be used on production systems with very high load unless you know what you are doing. Example_batch demonstrates how to execute a batch of statements. Example_dynamicColumns demonstrates how to handle dynamic column list. Example_marshalerUnmarshaler demonstrates how to implement a Marshaler and Unmarshaler. Example_nulls demonstrates how to distinguish between null and zero value when needed. Null values are unmarshalled as zero value of the type. If you need to distinguish for example between text column being null and empty string, you can unmarshal into *string field. Example_paging demonstrates how to manually fetch pages and use page state. See also package documentation about paging. Example_set demonstrates how to use sets. Example_userDefinedTypesMap demonstrates how to work with user-defined types as maps. See also Example_userDefinedTypesStruct and examples for UDTMarshaler and UDTUnmarshaler if you want to map to structs. Example_userDefinedTypesStruct demonstrates how to work with user-defined types as structs. See also examples for UDTMarshaler and UDTUnmarshaler if you need more control/better performance.
Package xorm is a simple and powerful ORM for Go. Make sure you have installed Go 1.6+ and then: Firstly, we should new an engine for a database Method NewEngine's parameters is the same as sql.Open. It depends drivers' implementation. Generally, one engine for an application is enough. You can set it as package variable. XORM also support raw SQL execution: 1. query a SQL string, the returned results is []map[string][]byte 2. execute a SQL string, the returned results There are 8 major ORM methods and many helpful methods to use to operate database. 1. Insert one or multiple records to database 2. Query one record or one variable from database 3. Query multiple records from database 4. Query multiple records and record by record handle, there two methods, one is Iterate, another is Rows 5. Update one or more records 6. Delete one or more records, Delete MUST has condition 7. Count records 8. Sum records The above 8 methods could use with condition methods chainable. Attention: the above 8 methods should be the last chainable method. 1. ID, In 2. Where, And, Or 3. OrderBy, Asc, Desc 4. Limit, Top 5. SQL, let you custom SQL 6. Cols, Omit, Distinct 7. Join, GroupBy, Having More usage, please visit http://xorm.io/docs
package bbolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
package bbolt implements a low-level key/value store in pure Go. It supports fully serializable transactions, ACID semantics, and lock-free MVCC with multiple readers and a single writer. Bolt can be used for projects that want a simple data store without the need to add large dependencies such as Postgres or MySQL. Bolt is a single-level, zero-copy, B+tree data store. This means that Bolt is optimized for fast read access and does not require recovery in the event of a system crash. Transactions which have not finished committing will simply be rolled back in the event of a crash. The design of Bolt is based on Howard Chu's LMDB database project. Bolt currently works on Windows, Mac OS X, and Linux. There are only a few types in Bolt: DB, Bucket, Tx, and Cursor. The DB is a collection of buckets and is represented by a single file on disk. A bucket is a collection of unique keys that are associated with values. Transactions provide either read-only or read-write access to the database. Read-only transactions can retrieve key/value pairs and can use Cursors to iterate over the dataset sequentially. Read-write transactions can create and delete buckets and can insert and remove keys. Only one read-write transaction is allowed at a time. The database uses a read-only, memory-mapped data file to ensure that applications cannot corrupt the database, however, this means that keys and values returned from Bolt cannot be changed. Writing to a read-only byte slice will cause Go to panic. Keys and values retrieved from the database are only valid for the life of the transaction. When used outside the transaction, these byte slices can point to different data or can point to invalid memory which will cause a panic.
Package gorp provides a simple way to marshal Go structs to and from SQL databases. It uses the database/sql package, and should work with any compliant database/sql driver. Source code and project home: https://github.com/go-gorp/gorp
Package sqlmock is a mock library implementing sql driver. Which has one and only purpose - to simulate any sql driver behavior in tests, without needing a real database connection. It helps to maintain correct **TDD** workflow. It does not require any modifications to your source code in order to test and mock database operations. Supports concurrency and multiple database mocking. The driver allows to mock any sql driver method behavior.
Package gorp provides a simple way to marshal Go structs to and from SQL databases. It uses the database/sql package, and should work with any compliant database/sql driver. Source code and project home: https://github.com/coopernurse/gorp
package mssql implements the TDS protocol used to connect to MS SQL Server (sqlserver) database servers. This package registers the driver: If the ordinal position is used for query parameters, identifiers will be named "@p1", "@p2", ... "@pN". Please refer to the README for the format of the DSN. There are multiple DSN formats accepted: ADO style, ODBC style, and URL style. The following is an example of a URL style DSN:
Package buffalo is a Go web development eco-system, designed to make your life easier. Buffalo helps you to generate a web project that already has everything from front-end (JavaScript, SCSS, etc.) to back-end (database, routing, etc.) already hooked up and ready to run. From there it provides easy APIs to build your web application quickly in Go. Buffalo **isn't just a framework**, it's a holistic web development environment and project structure that **lets developers get straight to the business** of, well, building their business.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unnecessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of key codes is supported, with support for up to 65 function keys, and various other special keys.
SQL Schema migration tool for Go. Key features: To install the library and command line program, use the following: The main command is called sql-migrate. Each command requires a configuration file (which defaults to dbconfig.yml, but can be specified with the -config flag). This config file should specify one or more environments: The `table` setting is optional and will default to `gorp_migrations`. The environment that will be used can be specified with the -env flag (defaults to development). Use the --help flag in combination with any of the commands to get an overview of its usage: The up command applies all available migrations. By contrast, down will only apply one migration by default. This behavior can be changed for both by using the -limit parameter. The redo command will unapply the last migration and reapply it. This is useful during development, when you're writing migrations. Use the status command to see the state of the applied migrations: If you are using MySQL, you must append ?parseTime=true to the datasource configuration. For example: See https://github.com/go-sql-driver/mysql#parsetime for more information. Import sql-migrate into your application: Set up a source of migrations, this can be from memory, from a set of files or from bindata (more on that later): Then use the Exec function to upgrade your database: Note that n can be greater than 0 even if there is an error: any migration that succeeded will remain applied even if a later one fails. The full set of capabilities can be found in the API docs below. Migrations are defined in SQL files, which contain a set of SQL statements. Special comments are used to distinguish up and down migrations. You can put multiple statements in each block, as long as you end them with a semicolon (;). If you have complex statements which contain semicolons, use StatementBegin and StatementEnd to indicate boundaries: The order in which migrations are applied is defined through the filename: sql-migrate will sort migrations based on their name. It's recommended to use an increasing version number or a timestamp as the first part of the filename. Normally each migration is run within a transaction in order to guarantee that it is fully atomic. However some SQL commands (for example creating an index concurrently in PostgreSQL) cannot be executed inside a transaction. In order to execute such a command in a migration, the migration can be run using the notransaction option: If you like your Go applications self-contained (that is: a single binary): use packr (https://github.com/gobuffalo/packr) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Use the PackrMigrationSource in your application to find the migrations: If you already have a box and would like to use a subdirectory: As an alternative, but slightly less maintained, you can use bindata (https://github.com/shuLhan/go-bindata) to embed the migration files. Just write your migration files as usual, as a set of SQL files in a folder. Then use bindata to generate a .go file with the migrations embedded: The resulting bindata.go file will contain your migrations. Remember to regenerate your bindata.go file whenever you add/modify a migration (go generate will help here, once it arrives). Use the AssetMigrationSource in your application to find the migrations: Both Asset and AssetDir are functions provided by bindata. Then proceed as usual. Adding a new migration source means implementing MigrationSource. The resulting slice of migrations will be executed in the given order, so it should usually be sorted by the Id field.
Package dynamodb provides the API client, operations, and parameter types for Amazon DynamoDB. Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. DynamoDB lets you offload the administrative burdens of operating and scaling a distributed database, so that you don't have to worry about hardware provisioning, setup and configuration, replication, software patching, or cluster scaling. With DynamoDB, you can create database tables that can store and retrieve any amount of data, and serve any level of request traffic. You can scale up or scale down your tables' throughput capacity without downtime or performance degradation, and use the Amazon Web Services Management Console to monitor resource utilization and performance metrics. DynamoDB automatically spreads the data and traffic for your tables over a sufficient number of servers to handle your throughput and storage requirements, while maintaining consistent and fast performance. All of your data is stored on solid state disks (SSDs) and automatically replicated across multiple Availability Zones in an Amazon Web Services Region, providing built-in high availability and data durability.
Package tcell provides a lower-level, portable API for building programs that interact with terminals or consoles. It works with both common (and many uncommon!) terminals or terminal emulators, and Windows console implementations. It provides support for up to 256 colors, text attributes, and box drawing elements. A database of terminals built from a real terminfo database is provided, along with code to generate new database entries. Tcell offers very rich support for mice, dependent upon the terminal of course. (Windows, XTerm, and iTerm 2 are known to work very well.) If the environment is not Unicode by default, such as an ISO8859 based locale or GB18030, Tcell can convert input and output, so that your terminal can operate in whatever locale is most convenient, while the application program can just assume "everything is UTF-8". Reasonable defaults are used for updating characters to something suitable for display. Unicode box drawing characters will be converted to use the alternate character set of your terminal, if native conversions are not available. If no ACS is available, then some ASCII fallbacks will be used. Note that support for non-UTF-8 locales (other than C) must be enabled by the application using RegisterEncoding() -- we don't have them all enabled by default to avoid bloating the application unneccessarily. (These days UTF-8 is good enough for almost everyone, and nobody should be using legacy locales anymore.) Also, actual glyphs for various code point will only be displayed if your terminal or emulator (or the font the emulator is using) supports them. A rich set of keycodes is supported, with support for up to 65 function keys, and various other special keys.
Package buntdb implements a low-level in-memory key/value store in pure Go. It persists to disk, is ACID compliant, and uses locking for multiple readers and a single writer. Bunt is ideal for projects that need a dependable database, and favor speed over data size.
Package memdb provides an in-memory database that supports transactions and MVCC.
Package rds provides the API client, operations, and parameter types for Amazon Relational Database Service. Amazon Relational Database Service (Amazon RDS) is a web service that makes it easier to set up, operate, and scale a relational database in the cloud. It provides cost-efficient, resizeable capacity for an industry-standard relational database and manages common database administration tasks, freeing up developers to focus on what makes their applications and businesses unique. Amazon RDS gives you access to the capabilities of a MySQL, MariaDB, PostgreSQL, Microsoft SQL Server, Oracle, Db2, or Amazon Aurora database server. These capabilities mean that the code, applications, and tools you already use today with your existing databases work with Amazon RDS without modification. Amazon RDS automatically backs up your database and maintains the database software that powers your DB instance. Amazon RDS is flexible: you can scale your DB instance's compute resources and storage capacity to meet your application's demand. As with all Amazon Web Services, there are no up-front investments, and you pay only for the resources you use. This interface reference for Amazon RDS contains documentation for a programming or command line interface you can use to manage Amazon RDS. Amazon RDS is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide. Amazon RDS API Reference For the alphabetical list of API actions, see API Actions. For the alphabetical list of data types, see Data Types. For a list of common query parameters, see Common Parameters. For descriptions of the error codes, see Common Errors. Amazon RDS User Guide For a summary of the Amazon RDS interfaces, see Available RDS Interfaces. For more information about how to use the Query API, see Using the Query API.
Package timestreamwrite provides the API client, operations, and parameter types for Amazon Timestream Write. Amazon Timestream is a fast, scalable, fully managed time-series database service that makes it easy to store and analyze trillions of time-series data points per day. With Timestream, you can easily store and analyze IoT sensor data to derive insights from your IoT applications. You can analyze industrial telemetry to streamline equipment management and maintenance. You can also store and analyze log data and metrics to improve the performance and availability of your applications. Timestream is built from the ground up to effectively ingest, process, and store time-series data. It organizes data to optimize query processing. It automatically scales based on the volume of data ingested and on the query volume to ensure you receive optimal performance while inserting and querying data. As your data grows over time, Timestream’s adaptive query processing engine spans across storage tiers to provide fast analysis while reducing costs.
Package cloud contains a library and tools for open cloud development in Go. The Go Cloud Project allows application developers to seamlessly deploy cloud applications on any combination of cloud providers. It does this by providing stable, idiomatic interfaces for common uses like storage and databases. Think `database/sql` for cloud products. At the core of the project are common types implemented by cloud providers. For example, the blob.Bucket type can be created using gcsblob.OpenBucket, s3blob.OpenBucket, or any other provider. Then, the blob.Bucket can be used throughout your application without worrying about the underlying implementation. This project works well with a code generator called Wire (https://github.com/google/wire/blob/master/README.md). It creates human-readable code that only imports the cloud SDKs for providers you use. This allows Go Cloud to grow to support any number of cloud providers, without increasing compile times or binary sizes, and avoiding any side effects from `init()` functions. For sample applications and a tutorial, see the samples directory (https://github.com/google/go-cloud/tree/master/samples).
Package geoip2 provides an easy-to-use API for the MaxMind GeoIP2 and GeoLite2 databases; this package does not support GeoIP Legacy databases. The structs provided by this package match the internal structure of the data in the MaxMind databases. See github.com/oschwald/maxminddb-golang for more advanced used cases. Example provides a basic example of using the API. Use of the Country method is analogous to that of the City method.
Package redshift provides the API client, operations, and parameter types for Amazon Redshift. This is an interface reference for Amazon Redshift. It contains documentation for one of the programming or command line interfaces you can use to manage Amazon Redshift clusters. Note that Amazon Redshift is asynchronous, which means that some interfaces may require techniques, such as polling or asynchronous callback handlers, to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a change is applied immediately, on the next instance reboot, or during the next maintenance window. For a summary of the Amazon Redshift cluster management interfaces, go to Using the Amazon Redshift Management Interfaces. Amazon Redshift manages all the work of setting up, operating, and scaling a data warehouse: provisioning capacity, monitoring and backing up the cluster, and applying patches and upgrades to the Amazon Redshift engine. You can focus on using your data to acquire new insights for your business and customers. If you are a first-time user of Amazon Redshift, we recommend that you begin by reading the Amazon Redshift Getting Started Guide. If you are a database developer, the Amazon Redshift Database Developer Guide explains how to design, build, query, and maintain the databases that make up your data warehouse.
Package miniredis is a pure Go Redis test server, for use in Go unittests. There are no dependencies on system binaries, and every server you start will be empty. import "github.com/alicebob/miniredis/v2" Start a server with `s := miniredis.RunT(t)`, it'll be shutdown via a t.Cleanup(). Or do everything manual: `s, err := miniredis.Run(); defer s.Close()` Point your Redis client to `s.Addr()` or `s.Host(), s.Port()`. Set keys directly via s.Set(...) and similar commands, or use a Redis client. For direct use you can select a Redis database with either `s.Select(12); s.Get("foo")` or `s.DB(12).Get("foo")`.
Package redis is a client for the Redis database. The Redigo FAQ (https://github.com/gomodule/redigo/wiki/FAQ) contains more documentation about this package. The Conn interface is the primary interface for working with Redis. Applications create connections by calling the Dial, DialWithTimeout or NewConn functions. In the future, functions will be added for creating sharded and other types of connections. The application must call the connection Close method when the application is done with the connection. The Conn interface has a generic method for executing Redis commands: The Redis command reference (http://redis.io/commands) lists the available commands. An example of using the Redis APPEND command is: The Do method converts command arguments to bulk strings for transmission to the server as follows: Redis command reply types are represented using the following Go types: Use type assertions or the reply helper functions to convert from interface{} to the specific Go type for the command result. Connections support pipelining using the Send, Flush and Receive methods. Send writes the command to the connection's output buffer. Flush flushes the connection's output buffer to the server. Receive reads a single reply from the server. The following example shows a simple pipeline. The Do method combines the functionality of the Send, Flush and Receive methods. The Do method starts by writing the command and flushing the output buffer. Next, the Do method receives all pending replies including the reply for the command just sent by Do. If any of the received replies is an error, then Do returns the error. If there are no errors, then Do returns the last reply. If the command argument to the Do method is "", then the Do method will flush the output buffer and receive pending replies without sending a command. Use the Send and Do methods to implement pipelined transactions. Connections support one concurrent caller to the Receive method and one concurrent caller to the Send and Flush methods. No other concurrency is supported including concurrent calls to the Do and Close methods. For full concurrent access to Redis, use the thread-safe Pool to get, use and release a connection from within a goroutine. Connections returned from a Pool have the concurrency restrictions described in the previous paragraph. Use the Send, Flush and Receive methods to implement Pub/Sub subscribers. The PubSubConn type wraps a Conn with convenience methods for implementing subscribers. The Subscribe, PSubscribe, Unsubscribe and PUnsubscribe methods send and flush a subscription management command. The receive method converts a pushed message to convenient types for use in a type switch. The Bool, Int, Bytes, String, Strings and Values functions convert a reply to a value of a specific type. To allow convenient wrapping of calls to the connection Do and Receive methods, the functions take a second argument of type error. If the error is non-nil, then the helper function returns the error. If the error is nil, the function converts the reply to the specified type: The Scan function converts elements of a array reply to Go types: Connection methods return error replies from the server as type redis.Error. Call the connection Err() method to determine if the connection encountered non-recoverable error such as a network error or protocol parsing error. If Err() returns a non-nil value, then the connection is not usable and should be closed. This example implements ZPOP as described at http://redis.io/topics/transactions using WATCH/MULTI/EXEC and scripting.
Package db (or upper-db) provides a common interface to work with a variety of data sources using adapters that wrap mature database drivers. Install upper-db: Usage See more usage examples and documentation for users at https://upper.io/db.v3.
Package pgsql implements gdb.Driver, which supports operations for database PostgreSQL. Note: 1. It does not support Replace features. 2. It does not support Insert Ignore features.
Package docdb provides the API client, operations, and parameter types for Amazon DocumentDB with MongoDB compatibility. Amazon DocumentDB is a fast, reliable, and fully managed database service. Amazon DocumentDB makes it easy to set up, operate, and scale MongoDB-compatible databases in the cloud. With Amazon DocumentDB, you can run the same application code and use the same drivers and tools that you use with MongoDB.
Package mssql implements gdb.Driver, which supports operations for database MSSql. Note: 1. It does not support Replace features. 2. It does not support LastInsertId.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package walletdb provides a namespaced database interface for btcwallet. A wallet essentially consists of a multitude of stored data such as private and public keys, key derivation bits, pay-to-script-hash scripts, and various metadata. One of the issues with many wallets is they are tightly integrated. Designing a wallet with loosely coupled components that provide specific functionality is ideal, however it presents a challenge in regards to data storage since each component needs to store its own data without knowing the internals of other components or breaking atomicity. This package solves this issue by providing a pluggable driver, namespaced database interface that is intended to be used by the main wallet daemon. This allows the potential for any backend database type with a suitable driver. Each component, which will typically be a package, can then implement various functionality such as address management, voting pools, and colored coin metadata in their own namespace without having to worry about conflicts with other packages even though they are sharing the same database that is managed by the wallet. A quick overview of the features walletdb provides are as follows: The main entry point is the DB interface. It exposes functionality for creating, retrieving, and removing namespaces. It is obtained via the Create and Open functions which take a database type string that identifies the specific database driver (backend) to use as well as arguments specific to the specified driver. The Namespace interface is an abstraction that provides facilities for obtaining transactions (the Tx interface) that are the basis of all database reads and writes. Unlike some database interfaces that support reading and writing without transactions, this interface requires transactions even when only reading or writing a single key. The Begin function provides an unmanaged transaction while the View and Update functions provide a managed transaction. These are described in more detail below. The Tx interface provides facilities for rolling back or commiting changes that took place while the transaction was active. It also provides the root bucket under which all keys, values, and nested buckets are stored. A transaction can either be read-only or read-write and managed or unmanaged. A managed transaction is one where the caller provides a function to execute within the context of the transaction and the commit or rollback is handled automatically depending on whether or not the provided function returns an error. Attempting to manually call Rollback or Commit on the managed transaction will result in a panic. An unmanaged transaction, on the other hand, requires the caller to manually call Commit or Rollback when they are finished with it. Leaving transactions open for long periods of time can have several adverse effects, so it is recommended that managed transactions are used instead. The Bucket interface provides the ability to manipulate key/value pairs and nested buckets as well as iterate through them. The Get, Put, and Delete functions work with key/value pairs, while the Bucket, CreateBucket, CreateBucketIfNotExists, and DeleteBucket functions work with buckets. The ForEach function allows the caller to provide a function to be called with each key/value pair and nested bucket in the current bucket. As discussed above, all of the functions which are used to manipulate key/value pairs and nested buckets exist on the Bucket interface. The root bucket is the upper-most bucket in a namespace under which data is stored and is created at the same time as the namespace. Use the RootBucket function on the Tx interface to retrieve it. The CreateBucket and CreateBucketIfNotExists functions on the Bucket interface provide the ability to create an arbitrary number of nested buckets. It is a good idea to avoid a lot of buckets with little data in them as it could lead to poor page utilization depending on the specific driver in use. This example demonstrates creating a new database, getting a namespace from it, and using a managed read-write transaction against the namespace to store and retrieve data.
Command usql is the universal command-line interface for SQL databases.
Package wtxmgr provides an implementation of a transaction database handling spend tracking for a bitcoin wallet. Its primary purpose is to save transactions with outputs spendable with wallet keys and transactions that are signed by wallet keys in memory, handle spend tracking for unspent outputs and newly-inserted transactions, and report the spendable balance from each unspent transaction output. It uses walletdb as the backend for storing the serialized transaction objects in buckets. Transaction outputs which are spendable by wallet keys are called credits (because they credit to a wallet's total spendable balance). Transaction inputs which spend previously-inserted credits are called debits (because they debit from the wallet's spendable balance). Spend tracking is mostly automatic. When a new transaction is inserted, if it spends from any unspent credits, they are automatically marked spent by the new transaction, and each input which spent a credit is marked as a debit. However, transaction outputs of inserted transactions must manually marked as credits, as this package has no knowledge of wallet keys or addresses, and therefore cannot determine which outputs may be spent. Details regarding individual transactions and their credits and debits may be queried either by just a transaction hash, or by hash and block. When querying for just a transaction hash, the most recent transaction with a matching hash will be queried. However, because transaction hashes may collide with other transaction hashes, methods to query for specific transactions in the chain (or unmined) are provided as well.
Package migrate reads migrations from sources and runs them against databases. Sources are defined by the `source.Driver` and databases by the `database.Driver` interface. The driver interfaces are kept "dump", all migration logic is kept in this package.
Package workerpool queues work to a limited number of goroutines. The purpose of the worker pool is to limit the concurrency of tasks executed by the workers. This is useful when performing tasks that require sufficient resources (CPU, memory, etc.), and running too many tasks at the same time would exhaust resources. A task is a function submitted to the worker pool for execution. Submitting tasks to this worker pool will not block, regardless of the number of tasks. Incoming tasks are immediately dispatched to an available worker. If no worker is immediately available, or there are already tasks waiting for an available worker, then the task is put on a waiting queue to wait for an available worker. The intent of the worker pool is to limit the concurrency of task execution, not limit the number of tasks queued to be executed. Therefore, this unbounded input of tasks is acceptable as the tasks cannot be discarded. If the number of inbound tasks is too many to even queue for pending processing, then the solution is outside the scope of workerpool. It should be solved by distributing load over multiple systems, and/or storing input for pending processing in intermediate storage such as a database, file system, distributed message queue, etc. This worker pool uses a single dispatcher goroutine to read tasks from the input task queue and dispatch them to worker goroutines. This allows for a small input channel, and lets the dispatcher queue as many tasks as are submitted when there are no available workers. Additionally, the dispatcher can adjust the number of workers as appropriate for the work load, without having to utilize locked counters and checks incurred on task submission. When no tasks have been submitted for a period of time, a worker is removed by the dispatcher. This is done until there are no more workers to remove. The minimum number of workers is always zero, because the time to start new workers is insignificant. It is advisable to use different worker pools for tasks that are bound by different resources, or that have different resource use patterns. For example, tasks that use X Mb of memory may need different concurrency limits than tasks that use Y Mb of memory. When there are no available workers to handle incoming tasks, the tasks are put on a waiting queue, in this implementation. In implementations mentioned in the credits below, these tasks were passed to goroutines. Using a queue is faster and has less memory overhead than creating a separate goroutine for each waiting task, allowing a much higher number of waiting tasks. Also, using a waiting queue ensures that tasks are given to workers in the order the tasks were received. This implementation builds on ideas from the following: http://marcio.io/2015/07/handling-1-million-requests-per-minute-with-golang http://nesv.github.io/golang/2014/02/25/worker-queues-in-go.html