Package ble provides functions to discover, connect, pair, and communicate with Bluetooth Low Energy peripheral devices. This implementation uses the BlueZ D-Bus interface, rather than sockets. It is similar to github.com/adafruit/Adafruit_Python_BluefruitLE
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Command ruuvi-prometheus is a Prometheus exporter that listens to Ruuvi sensor Bluetooth Low Energy beacons and exposes them as metrics.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package tilt provides an interface to Tilt Bluetooth devices
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. Support for writing a peripheral is mostly done: You can create services and characteristics, advertise, accept connections, and handle requests. Central support is missing: Scan, connect, discover services and characteristics, make requests. gatt only supports Linux, with BlueZ installed. This may change. Installed the required packages, e.g.: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: gatt uses two helper executables. The source for them is in the c directory. There's an included makefile. It currently assumes that your native compiler is gcc and that you want the executables in /usr/local/bin. If /usr/local/bin is not already in your PATH, add it. If you don't like those assumptions, edit the makefile. (TODO: Get someone with strong makefile-fu to help me clean this up.) Root is required in the install phase to give hci-ble permissions to administer the network. Make sure that your BLE device is up: Gatt servers are constructed by creating a new server, adding services and characteristics, and then starting the server. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control by default. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.
Goserial is a simple go package to allow you to read and write from the serial port as a stream of bytes. It aims to have the same API on all platforms, including windows. As an added bonus, the windows package does not use cgo, so you can cross compile for windows from another platform. Unfortunately goinstall does not currently let you cross compile so you will have to do it manually: Currently there is very little in the way of configurability. You can set the baud rate. Then you can Read(), Write(), or Close() the connection. Read() will block until at least one byte is returned. Write is the same. There is currently no exposed way to set the timeouts, though patches are welcome. Currently all ports are opened with 8 data bits, 1 stop bit, no parity, no hardware flow control, and no software flow control. This works fine for many real devices and many faux serial devices including usb-to-serial converters and bluetooth serial ports. You may Read() and Write() simulantiously on the same connection (from different goroutines). Example usage:
Package gatt provides a Bluetooth Low Energy gatt implementation. Gatt (Generic Attribute Profile) is the protocol used to write BLE peripherals (servers) and centrals (clients). This package is a work in progress. The API will change. As a peripheral, you can create services, characteristics, and descriptors, advertise, accept connections, and handle requests. As a central, you can scan, connect, discover services, and make requests. gatt supports both Linux and OS X. On Linux: To gain complete and exclusive control of the HCI device, gatt uses HCI_CHANNEL_USER (introduced in Linux v3.14) instead of HCI_CHANNEL_RAW. Those who must use an older kernel may patch in these relevant commits from Marcel Holtmann: Note that because gatt uses HCI_CHANNEL_USER, once gatt has opened the device no other program may access it. Before starting a gatt program, make sure that your BLE device is down: If you have BlueZ 5.14+ (or aren't sure), stop the built-in bluetooth server, which interferes with gatt, e.g.: Because gatt programs administer network devices, they must either be run as root, or be granted appropriate capabilities: USAGE See the server.go, discoverer.go, and explorer.go in the examples/ directory for writing server or client programs that run on Linux and OS X. Users, especially on Linux platforms, seeking finer-grained control over the devices can see the examples/server_lnx.go for the usage of Option, which are platform specific. See the rest of the docs for other options and finer-grained control. Note that some BLE central devices, particularly iOS, may aggressively cache results from previous connections. If you change your services or characteristics, you may need to reboot the other device to pick up the changes. This is a common source of confusion and apparent bugs. For an OS X central, see http://stackoverflow.com/questions/20553957. gatt started life as a port of bleno, to which it is indebted: https://github.com/sandeepmistry/bleno. If you are having problems with gatt, particularly around installation, issues filed with bleno might also be helpful references. To try out your GATT server, it is useful to experiment with a generic BLE client. LightBlue is a good choice. It is available free for both iOS and OS X.