Sorted by download count
Package dns implements a full featured interface to the Domain Name System. Both server- and client-side programming is supported. The package allows complete control over what is sent out to the DNS. The API follows the less-is-more principle, by presenting a small, clean interface. It supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default origin (.) and TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be sent. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: More advanced options are available using a net.Dialer and the corresponding API. For example it is possible to set a timeout, or to specify a source IP address and port to use for the connection: If these "advanced" features are not needed, a simple UDP query can be sent, with: When this functions returns you will get DNS message. A DNS message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": If an incoming message contains a TSIG record it MUST be the last record in the additional section (RFC2845 3.2). This means that you should make the call to SetTsig last, right before executing the query. If you make any changes to the RRset after calling SetTsig() the signature will be incorrect. When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. A custom TSIG implementation can be used. This requires additional code to perform any session establishment and signature generation/verification. The client must be configured with an implementation of the TsigProvider interface: Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. See https://miek.nl/2014/september/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines a new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (RFC 7871). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package goes provides an API to access Elasticsearch.
IPFS is a global, versioned, peer-to-peer filesystem
Package pq is a pure Go Postgres driver for the database/sql package. In most cases clients will use the database/sql package instead of using this package directly. For example: You can also connect to a database using a URL. For example: Similarly to libpq, when establishing a connection using pq you are expected to supply a connection string containing zero or more parameters. A subset of the connection parameters supported by libpq are also supported by pq. Additionally, pq also lets you specify run-time parameters (such as search_path or work_mem) directly in the connection string. This is different from libpq, which does not allow run-time parameters in the connection string, instead requiring you to supply them in the options parameter. For compatibility with libpq, the following special connection parameters are supported: Valid values for sslmode are: See http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-CONNSTRING for more information about connection string parameters. Use single quotes for values that contain whitespace: A backslash will escape the next character in values: Note that the connection parameter client_encoding (which sets the text encoding for the connection) may be set but must be "UTF8", matching with the same rules as Postgres. It is an error to provide any other value. In addition to the parameters listed above, any run-time parameter that can be set at backend start time can be set in the connection string. For more information, see http://www.postgresql.org/docs/current/static/runtime-config.html. Most environment variables as specified at http://www.postgresql.org/docs/current/static/libpq-envars.html supported by libpq are also supported by pq. If any of the environment variables not supported by pq are set, pq will panic during connection establishment. Environment variables have a lower precedence than explicitly provided connection parameters. The pgpass mechanism as described in http://www.postgresql.org/docs/current/static/libpq-pgpass.html is supported, but on Windows PGPASSFILE must be specified explicitly. database/sql does not dictate any specific format for parameter markers in query strings, and pq uses the Postgres-native ordinal markers, as shown above. The same marker can be reused for the same parameter: pq does not support the LastInsertId() method of the Result type in database/sql. To return the identifier of an INSERT (or UPDATE or DELETE), use the Postgres RETURNING clause with a standard Query or QueryRow call: For more details on RETURNING, see the Postgres documentation: For additional instructions on querying see the documentation for the database/sql package. Parameters pass through driver.DefaultParameterConverter before they are handled by this package. When the binary_parameters connection option is enabled, []byte values are sent directly to the backend as data in binary format. This package returns the following types for values from the PostgreSQL backend: All other types are returned directly from the backend as []byte values in text format. pq may return errors of type *pq.Error which can be interrogated for error details: See the pq.Error type for details. You can perform bulk imports by preparing a statement returned by pq.CopyIn (or pq.CopyInSchema) in an explicit transaction (sql.Tx). The returned statement handle can then be repeatedly "executed" to copy data into the target table. After all data has been processed you should call Exec() once with no arguments to flush all buffered data. Any call to Exec() might return an error which should be handled appropriately, but because of the internal buffering an error returned by Exec() might not be related to the data passed in the call that failed. CopyIn uses COPY FROM internally. It is not possible to COPY outside of an explicit transaction in pq. Usage example: PostgreSQL supports a simple publish/subscribe model over database connections. See http://www.postgresql.org/docs/current/static/sql-notify.html for more information about the general mechanism. To start listening for notifications, you first have to open a new connection to the database by calling NewListener. This connection can not be used for anything other than LISTEN / NOTIFY. Calling Listen will open a "notification channel"; once a notification channel is open, a notification generated on that channel will effect a send on the Listener.Notify channel. A notification channel will remain open until Unlisten is called, though connection loss might result in some notifications being lost. To solve this problem, Listener sends a nil pointer over the Notify channel any time the connection is re-established following a connection loss. The application can get information about the state of the underlying connection by setting an event callback in the call to NewListener. A single Listener can safely be used from concurrent goroutines, which means that there is often no need to create more than one Listener in your application. However, a Listener is always connected to a single database, so you will need to create a new Listener instance for every database you want to receive notifications in. The channel name in both Listen and Unlisten is case sensitive, and can contain any characters legal in an identifier (see http://www.postgresql.org/docs/current/static/sql-syntax-lexical.html#SQL-SYNTAX-IDENTIFIERS for more information). Note that the channel name will be truncated to 63 bytes by the PostgreSQL server. You can find a complete, working example of Listener usage at https://godoc.org/github.com/lib/pq/example/listen. If you need support for Kerberos authentication, add the following to your main package: This package is in a separate module so that users who don't need Kerberos don't have to download unnecessary dependencies. When imported, additional connection string parameters are supported:
Package micro is a pluggable framework for microservices
Package redis implements a Redis client.
Package gjson provides searching for json strings.
Package goquery implements features similar to jQuery, including the chainable syntax, to manipulate and query an HTML document. It brings a syntax and a set of features similar to jQuery to the Go language. It is based on Go's net/html package and the CSS Selector library cascadia. Since the net/html parser returns nodes, and not a full-featured DOM tree, jQuery's stateful manipulation functions (like height(), css(), detach()) have been left off. Also, because the net/html parser requires UTF-8 encoding, so does goquery: it is the caller's responsibility to ensure that the source document provides UTF-8 encoded HTML. See the repository's wiki for various options on how to do this. Syntax-wise, it is as close as possible to jQuery, with the same method names when possible, and that warm and fuzzy chainable interface. jQuery being the ultra-popular library that it is, writing a similar HTML-manipulating library was better to follow its API than to start anew (in the same spirit as Go's fmt package), even though some of its methods are less than intuitive (looking at you, index()...). It is hosted on GitHub, along with additional documentation in the README.md file: https://github.com/puerkitobio/goquery Please note that because of the net/html dependency, goquery requires Go1.1+. The various methods are split into files based on the category of behavior. The three dots (...) indicate that various "overloads" are available. * array.go : array-like positional manipulation of the selection. * expand.go : methods that expand or augment the selection's set. * filter.go : filtering methods, that reduce the selection's set. * iteration.go : methods to loop over the selection's nodes. * manipulation.go : methods for modifying the document * property.go : methods that inspect and get the node's properties values. * query.go : methods that query, or reflect, a node's identity. * traversal.go : methods to traverse the HTML document tree. * type.go : definition of the types exposed by goquery. * utilities.go : definition of helper functions (and not methods on a *Selection) that are not part of jQuery, but are useful to goquery. This example scrapes the reviews shown on the home page of metalsucks.net.
Package redis implements a Redis client.
Package yaml implements YAML support for the Go language. Source code and other details for the project are available at GitHub:
Package yaml implements YAML support for the Go language. Source code and other details for the project are available at GitHub:
Package badger implements an embeddable, simple and fast key-value database, written in pure Go. It is designed to be highly performant for both reads and writes simultaneously. Badger uses Multi-Version Concurrency Control (MVCC), and supports transactions. It runs transactions concurrently, with serializable snapshot isolation guarantees. Badger uses an LSM tree along with a value log to separate keys from values, hence reducing both write amplification and the size of the LSM tree. This allows LSM tree to be served entirely from RAM, while the values are served from SSD. Badger has the following main types: DB, Txn, Item and Iterator. DB contains keys that are associated with values. It must be opened with the appropriate options before it can be accessed. All operations happen inside a Txn. Txn represents a transaction, which can be read-only or read-write. Read-only transactions can read values for a given key (which are returned inside an Item), or iterate over a set of key-value pairs using an Iterator (which are returned as Item type values as well). Read-write transactions can also update and delete keys from the DB. See the examples for more usage details.
Package badger implements an embeddable, simple and fast key-value database, written in pure Go. It is designed to be highly performant for both reads and writes simultaneously. Badger uses Multi-Version Concurrency Control (MVCC), and supports transactions. It runs transactions concurrently, with serializable snapshot isolation guarantees. Badger uses an LSM tree along with a value log to separate keys from values, hence reducing both write amplification and the size of the LSM tree. This allows LSM tree to be served entirely from RAM, while the values are served from SSD. Badger has the following main types: DB, Txn, Item and Iterator. DB contains keys that are associated with values. It must be opened with the appropriate options before it can be accessed. All operations happen inside a Txn. Txn represents a transaction, which can be read-only or read-write. Read-only transactions can read values for a given key (which are returned inside an Item), or iterate over a set of key-value pairs using an Iterator (which are returned as Item type values as well). Read-write transactions can also update and delete keys from the DB. See the examples for more usage details.
Package mgo offers a rich MongoDB driver for Go. Details about the mgo project (pronounced as "mango") are found in its web page: Usage of the driver revolves around the concept of sessions. To get started, obtain a session using the Dial function: This will establish one or more connections with the cluster of servers defined by the url parameter. From then on, the cluster may be queried with multiple consistency rules (see SetMode) and documents retrieved with statements such as: New sessions are typically created by calling session.Copy on the initial session obtained at dial time. These new sessions will share the same cluster information and connection cache, and may be easily handed into other methods and functions for organizing logic. Every session created must have its Close method called at the end of its life time, so its resources may be put back in the pool or collected, depending on the case. For more details, see the documentation for the types and methods.
Package sqlite3 provides interface to SQLite3 databases. This works as a driver for database/sql. Installation Currently, go-sqlite3 supports the following data types. You can write your own extension module for sqlite3. For example, below is an extension for a Regexp matcher operation. It needs to be built as a so/dll shared library. And you need to register the extension module like below. Then, you can use this extension. You can hook and inject your code when the connection is established by setting ConnectHook to get the SQLiteConn. You can also use database/sql.Conn.Raw (Go >= 1.13): If you want to register Go functions as SQLite extension functions you can make a custom driver by calling RegisterFunction from ConnectHook. You can then use the custom driver by passing its name to sql.Open. See the documentation of RegisterFunc for more details.
IPFS is a global, versioned, peer-to-peer filesystem
This package is a stub main wrapping cmd/kind.Main()
Package chi is a small, idiomatic and composable router for building HTTP services. chi requires Go 1.14 or newer. Example: See github.com/go-chi/chi/_examples/ for more in-depth examples. URL patterns allow for easy matching of path components in HTTP requests. The matching components can then be accessed using chi.URLParam(). All patterns must begin with a slash. A simple named placeholder {name} matches any sequence of characters up to the next / or the end of the URL. Trailing slashes on paths must be handled explicitly. A placeholder with a name followed by a colon allows a regular expression match, for example {number:\\d+}. The regular expression syntax is Go's normal regexp RE2 syntax, except that regular expressions including { or } are not supported, and / will never be matched. An anonymous regexp pattern is allowed, using an empty string before the colon in the placeholder, such as {:\\d+} The special placeholder of asterisk matches the rest of the requested URL. Any trailing characters in the pattern are ignored. This is the only placeholder which will match / characters. Examples:
btcd is a full-node bitcoin implementation written in Go. The default options are sane for most users. This means btcd will work 'out of the box' for most users. However, there are also a wide variety of flags that can be used to control it. The following section provides a usage overview which enumerates the flags. An interesting point to note is that the long form of all of these options (except -C) can be specified in a configuration file that is automatically parsed when btcd starts up. By default, the configuration file is located at ~/.btcd/btcd.conf on POSIX-style operating systems and %LOCALAPPDATA%\btcd\btcd.conf on Windows. The -C (--configfile) flag, as shown below, can be used to override this location. Usage: Application Options: Help Options:
Package badger implements an embeddable, simple and fast key-value database, written in pure Go. It is designed to be highly performant for both reads and writes simultaneously. Badger uses Multi-Version Concurrency Control (MVCC), and supports transactions. It runs transactions concurrently, with serializable snapshot isolation guarantees. Badger uses an LSM tree along with a value log to separate keys from values, hence reducing both write amplification and the size of the LSM tree. This allows LSM tree to be served entirely from RAM, while the values are served from SSD. Badger has the following main types: DB, Txn, Item and Iterator. DB contains keys that are associated with values. It must be opened with the appropriate options before it can be accessed. All operations happen inside a Txn. Txn represents a transaction, which can be read-only or read-write. Read-only transactions can read values for a given key (which are returned inside an Item), or iterate over a set of key-value pairs using an Iterator (which are returned as Item type values as well). Read-write transactions can also update and delete keys from the DB. See the examples for more usage details.
Package fyne describes the objects and components available to any Fyne app. These can all be created, manipulated and tested without rendering (for speed). Your main package should use the app package to create an application with a default driver that will render your UI. A simple application may look like this:
Package h2c implements the h2c part of HTTP/2. The h2c protocol is the non-TLS secured version of HTTP/2 which is not available from net/http. Code is a copy of Traefik's h2c server, but adapted for standalone usage as an http.Handler. Traefik can be found here: github.com/containous/traefik
Package fsnotify provides a platform-independent interface for file system notifications.
Package errors provides simple error handling primitives. The traditional error handling idiom in Go is roughly akin to which when applied recursively up the call stack results in error reports without context or debugging information. The errors package allows programmers to add context to the failure path in their code in a way that does not destroy the original value of the error. The errors.Wrap function returns a new error that adds context to the original error by recording a stack trace at the point Wrap is called, together with the supplied message. For example If additional control is required, the errors.WithStack and errors.WithMessage functions destructure errors.Wrap into its component operations: annotating an error with a stack trace and with a message, respectively. Using errors.Wrap constructs a stack of errors, adding context to the preceding error. Depending on the nature of the error it may be necessary to reverse the operation of errors.Wrap to retrieve the original error for inspection. Any error value which implements this interface can be inspected by errors.Cause. errors.Cause will recursively retrieve the topmost error that does not implement causer, which is assumed to be the original cause. For example: Although the causer interface is not exported by this package, it is considered a part of its stable public interface. All error values returned from this package implement fmt.Formatter and can be formatted by the fmt package. The following verbs are supported: New, Errorf, Wrap, and Wrapf record a stack trace at the point they are invoked. This information can be retrieved with the following interface: The returned errors.StackTrace type is defined as The Frame type represents a call site in the stack trace. Frame supports the fmt.Formatter interface that can be used for printing information about the stack trace of this error. For example: Although the stackTracer interface is not exported by this package, it is considered a part of its stable public interface. See the documentation for Frame.Format for more details.