Package gochrome aims to be a complete Chrome DevTools Protocol Viewer implementation. Versioned packages are available. Curently the only version is `tot` or Tip-of-Tree. Stable versions will be made available in the future. This is beta software and hasn't been well exercised in real-world applications. See https://chromedevtools.github.io/devtools-protocol/ The Chrome DevTools Protocol allows for tools to instrument, inspect, debug and profile Chromium, Chrome and other Blink-based browsers. Many existing projects currently use the protocol. The Chrome DevTools uses this protocol and the team maintains its API. Instrumentation is divided into a number of domains (DOM, Debugger, Network etc.). Each domain defines a number of commands it supports and events it generates. Both commands and events are serialized JSON objects of a fixed structure. You can either debug over the wire using the raw messages as they are described in the corresponding domain documentation, or use extension JavaScript API. The latest (tip-of-tree) protocol (tot) It changes frequently and can break at any time. However it captures the full capabilities of the Protocol, whereas the stable release is a subset. There is no backwards compatibility support guaranteed for the capabilities it introduces. Resources Basics: Using DevTools as protocol client The Developer Tools front-end can attach to a remotely running Chrome instance for debugging. For this scenario to work, you should start your host Chrome instance with the remote-debugging-port command line switch: Then you can start a separate client Chrome instance, using a distinct user profile: Now you can navigate to the given port from your client and attach to any of the discovered tabs for debugging: http://localhost:9222 You will find the Developer Tools interface identical to the embedded one and here is why: In this scenario, you can substitute Developer Tools front-end with your own implementation. Instead of navigating to the HTML page at http://localhost:9222, your application can discover available pages by requesting: http://localhost:9222/json and getting a JSON object with information about inspectable pages along with the WebSocket addresses that you could use in order to start instrumenting them. Remote debugging is especially useful when debugging remote instances of the browser or attaching to the embedded devices. Blink port owners are responsible for exposing debugging connections to the external users. This is especially handy to understand how the DevTools frontend makes use of the protocol. First, run Chrome with the debugging port open: Then, select the Chromium Projects item in the Inspectable Pages list. Now that DevTools is up and fullscreen, open DevTools to inspect it. Cmd-R in the new inspector to make the first restart. Now head to Network Panel, filter by Websocket, select the connection and click the Frames tab. Now you can easily see the frames of WebSocket activity as you use the first instance of the DevTools. To allow chrome extensions to interact with the protocol, we introduced chrome.debugger extension API that exposes this JSON message transport interface. As a result, you can not only attach to the remotely running Chrome instance, but also instrument it from its own extension. Chrome Debugger Extension API provides a higher level API where command domain, name and body are provided explicitly in the `sendCommand` call. This API hides request ids and handles binding of the request with its response, hence allowing `sendCommand` to report result in the callback function call. One can also use this API in combination with the other Extension APIs. If you are developing a Web-based IDE, you should implement an extension that exposes debugging capabilities to your page and your IDE will be able to open pages with the target application, set breakpoints there, evaluate expressions in console, live edit JavaScript and CSS, display live DOM, network interaction and any other aspect that Developer Tools is instrumenting today. Opening embedded Developer Tools will terminate the remote connection and thus detach the extension. https://chromedevtools.github.io/devtools-protocol/#simultaneous The canonical protocol definitions live in the Chromium source tree: (browser_protocol.json and js_protocol.json). They are maintained manually by the DevTools engineering team. These files are mirrored (hourly) on GitHub in the devtools-protocol repo. The declarative protocol definitions are used across tools. Within Chromium, a binding layer is created for the Chrome DevTools to interact with, and separately the protocol is used for Chrome Headless’s C++ interface. What’s the protocol_externs file It’s created via generate_protocol_externs.py and useful for tools using closure compiler. The TypeScript story is here. Not yet. See bugger-daemon’s third-party docs. See also the endpoints implementation in Chromium. /json/protocol was added in Chrome 60. The endpoint is exposed as webSocketDebuggerUrl in /json/version. Note the browser in the URL, rather than page. If Chrome was launched with --remote-debugging-port=0 and chose an open port, the browser endpoint is written to both stderr and the DevToolsActivePort file in browser profile folder. Yes, as of Chrome 63! See Multi-client remote debugging support. Upon disconnnection, the outgoing client will receive a detached event. For example: View the enum of possible reasons. (For reference: the original patch). After disconnection, some apps have chosen to pause their state and offer a reconnect button.
Package uinput is a pure go package that provides access to the userland input device driver uinput on linux systems. Virtual keyboard devices as well as virtual mouse input devices may be created using this package. The keycodes and other event definitions, that are available and can be used to trigger input events, are part of this package ("Key1" for number 1, for example). In order to use the virtual keyboard, you will need to follow these three steps: Initialize the device Example: vk, err := CreateKeyboard("/dev/uinput", "Virtual Keyboard") Send Button events to the device Example (print a single D): err = vk.KeyPress(uinput.KeyD) Example (keep moving right by holding down right arrow key): err = vk.KeyDown(uinput.KeyRight) Example (stop moving right by releasing the right arrow key): err = vk.KeyUp(uinput.KeyRight) Close the device Example: err = vk.Close() A virtual mouse input device is just as easy to create and use: Initialize the device: Example: vm, err := CreateMouse("/dev/uinput", "DangerMouse") Move the cursor around and issue click events Example (move mouse right): err = vm.MoveRight(42) Example (move mouse left): err = vm.MoveLeft(42) Example (move mouse up): err = vm.MoveUp(42) Example (move mouse down): err = vm.MoveDown(42) Example (trigger a left click): err = vm.LeftClick() Example (trigger a right click): err = vm.RightClick() Close the device Example: err = vm.Close() If you'd like to use absolute input events (move the cursor to specific positions on screen), use the touch pad. Note that you'll need to specify the size of the screen area you want to use when you initialize the device. Here are a few examples of how to use the virtual touch pad: Initialize the device: Example: vt, err := CreateTouchPad("/dev/uinput", "DontTouchThis", 0, 1024, 0, 768) Move the cursor around and issue click events Example (move cursor to the top left corner of the screen): err = vt.MoveTo(0, 0) Example (move cursor to the position x: 100, y: 250): err = vt.MoveTo(100, 250) Example (trigger a left click): err = vt.LeftClick() Example (trigger a right click): err = vt.RightClick() Close the device Example: err = vt.Close()
Continuation of byosh and SimpleSNIProxy projects. To ensure that Sniproxy works correctly, it's important to have ports 80, 443, and 53 open. However, on Ubuntu, it's possible that port 53 may be in use by systemd-resolved. To disable systemd-resolved and free up the port, follow these instructions. If you prefer to keep systemd-resolved and just disable the built-in resolver, you can use the following command: The simplest way to install the software is by utilizing the pre-built binaries available on the releases page. Alternatively, there are other ways to install, which include: Using "go install" command: Using Docker or Podman: Using the installer script: sniproxy can be configured using a configuration file or command line flags. The configuration file is a JSON file, and an example configuration file can be found under config.sample.json. Flags: In this tutorial, we will go over the steps to set up an SNI proxy using Vultr as a service provider. This will allow you to serve multiple SSL-enabled websites from a single IP address. - A Vultr account. If you don't have one, you can sign up for free using my Vultr referal link ## Step 1: Create a Vultr Server First, log in to your Vultr account and click on the "Instances" tab in the top menu. Then, click the "+" button to deploy a new server. On the "Deploy New Instance" page, select the following options: - Choose Server: Choose "Cloud Compute" - CPU & Storage Technology: Any of the choices should work perfectly fine - Server Location: Choose the location of the server. This will affect the latency of your website, so it's a good idea to choose a location that is close to your target audience. - Server Image: Any OS listed there is supported. If you're not sure what to choose, Ubuntu is a good option - Server Size: Choose a server size that is suitable for your needs. A small or medium-sized server should be sufficient for most SNI proxy setups. Pay attention to the monthly bandwidth usage as well - "Add Auto Backups": not strictly needed for sniproxy. - "SSH Keys": choose a SSH key to facilitate logging in later on. you can always use Vultr's builtin console as well. - Server Hostname: Choose a hostname for your server. This can be any name you like. After you have selected the appropriate options, click the "Deploy Now" button to create your server. ## Step 2: Install the SNI Proxy Once your server has been created, log in to the server using SSH or console. The root password is available under the "Overview" tab in instances list. Ensure the firewall (firewalld, ufw or iptables) is allowing connectivity to ports 80/TCP, 443/TCP and 53/UDP. For `ufw`, allow these ports with: once you have a shell in front of you, run the following (assuming you're on Ubuntu 22.04) above script is an interactive installer, it will ask you a few questions and then install sniproxy for you. it also installs sniproxy as a systemd servers, and enables it to start on boot. above wizard will set up execution arguments for sniproxy. you can edit them by running and then edit the execStart line to your liking. for example, if you want to use a different port for HTTP, you can edit the line to
Package tk9.0 is a CGo-free, cross platform GUI toolkit for Go. It is similar to Tkinter for Python. Also available in _examples/hello.go To execute the above program on any supported target issue something like The CGO_ENABLED=0 is optional and here it only demonstrates the program can be built without CGo. Do I need to install the Tcl/Tk libraries on my system to use this package or programs that import it? No. You still have to have a desktop environment installed on systems where that is not necessarily the case by default. That means some of the unix-like systems. Usually installing any desktop environment, like Gnome, Xfce etc. provides all the required library (.so) files. The minimum is the X Window System and this package was tested to work there, although with all the limitations one can expect in this case. Windows: How to build an executable that doesn't open a console window when run? From the documentation for cmd/link: On Windows, -H windowsgui writes a "GUI binary" instead of a "console binary.". To pass the flag to the Go build system use 'go build -ldflags -H=windowsgui somefile.go', for example. What does CGo-free really mean? cgo is a tool used by the Go build system when Go code uses the pseudo-import "C". For technical details please see the link. For us it is important that using CGo ends up invoking a C compiler during building of a Go program/package. The C compiler is used to determine exact, possibly locally dependent, values of C preprocessor constants and other defines, as well as the exact layout of C structs. This enables the Go compiler to correctly handle things like, schematically `C.someStruct.someField` appearing in Go code. At runtime a Go program using CGo must switch stacks when calling into C. Additionally the runtime scheduler is made aware of such calls into C. The former is necessary, the later is not, but it is good to have as it improves performance and provides better resource management. There is an evironment variable defined, `CGO_ENABLED`. When the Go build system compiles Go code, it checks for the value of this env var. If it is not set or its value is "1", then CGo is enabled and used when 'import "C"' is encountered. If the env var contains "0", CGo is disabled and programs using 'import "C"' will not compile. After this longish intro we can finally get to the short answer: CGo-free means this package can be compiled with CGO_ENABLED=0. In other words, there's no 'import "C"' clause anywhere. The consequences of being CGo-free follows from the above. The Go build system does not need to invoke a C compiler when compiling this package. Hence users don't have to have a C compiler installed in their machines. There are advantages when a C compiler is not invoked during compilation/build of Go code. Programs can be installed on all targets supported by this package the easy way: '$ go install example.com/foo@latest' and programs for all supported targets can be cross-compiled on all Go-supported targets just by setting the respective env vars, like performing '$ GOOS=darwin GOARCH=arm64 go build' on a Windows/AMD64 machine, for example. How does this package achieve being CGo-free? The answer depends on the particular target in question. Targets supported by purego call into the Tcl/Tk C libraries without using CGo. See the source code at the link for how it is done. On other targets CGo is avoided by transpiling all the C libraries and their transitive dependencies to Go. In both cases the advantages are the same: CGo-free programs are go-installable and CGo-free programs can be cross-compiled without having a C compiler or a cross-C compiler tool chain installed. Does being CGo-free remove the overhead of crossing the Go-C boundary? For the purego targets, no. Only the C compiler is not involved anymore. For other supported targets the boundary for calling Tcl/Tk C API from Go is gone. No free lunches though, the transpilled code has to care about additional things the C code does not need to - with the respective performance penalties, now just in different places. Consider this program in _examples/debugging.go: Execute the program using the tags as indicated, then close the window or click the Hello button. With the tk.dmesg tag the package initialization prints the debug messages path. So we can view it, for example, like this: 18876 was the process PID in this particular run. Using the tags allows to inspect the Tcl/Tk code executed during the lifetime of the process. These combinations of GOOS and GOARCH are currently supported Specific to FreeBSD: When building with cross-compiling or CGO_ENABLED=0, add the following argument to `go` so that these symbols are defined by making fakecgo the Cgo. Builder results available at modern-c.appspot.com. At the moment the package is a MVP allowing to build at least some simple, yet useful programs. The full Tk API is not yet usable. Please report needed, but non-exposed Tk features at the issue tracker, thanks. Providing feedback about the missing building blocks, bugs and your user experience is invaluable in helping this package to eventually reach version 1. See also RERO. The ErrorMode variable selects the behaviour on errors for certain functions that do not return error. When ErrorMode is PanicOnError, the default, errors will panic, providing a stack trace. When ErrorMode is CollectErrors, errors will be recorded using errors.Join in the Error variable. Even if a function does not return error, it is still possible to handle errors in the usual way when needed, except that Error is now a static variable. That's a problem in the general case, but less so in this package that must be used from a single goroutine only, as documented elsewhere. This is obviously a compromise enabling to have a way to check for errors and, at the same time, the ability to write concise code like: There are altogether four different places where the call to the Button function can produce errors as additionally to the call itself, every of its three arguments can independently fail as well. Checking each and one of them separately is not always necessary in GUI code. But the explicit option in the first example is still available when needed. There is a centralized theme register in Themes. Theme providers can opt in to call RegisterTheme at package initialization to make themes discoverable at run-time. Clients can use ActivateTheme to apply a theme by name. Example in _examples/azure.go. There is a VNC over wbesockets functionality available for X11 backed hosts. See the tk9.0/vnc package for details. Package initialization is done lazily. This saves noticeable additional startup time and avoids screen flicker in hybrid programs that use the GUI only on demand. (For a hybrid example see _examples/ring.go.) Early package initialization can be enforced by Initialize. Initialization will fail if a Unix process starts on a machine with no X server or the process is started in a way that it has no access to the X server. On the other hand, this package may work on Unix machines with no X server if the process is started remotely using '$ ssh -X foo@bar' and the X forwarding is enabled/supported. Darwin port uses the macOS GUI API and does not use X11. Zero or more options can be specified when creating a widget. For example or Tcl/Tk uses widget pathnames, image and font names explicitly set by user code. This package generates those names automatically and they are not directly needed in code that uses this package. There is, for a example, a Tcl/tk 'text' widget and a '-text' option. This package exports the widget as type 'TextWidget', its constructor as function 'Text' and the option as function 'Txt'. The complete list is: This package should be used from the same goroutine that initialized the package. Package initialization performs a runtime.LockOSThread, meaning func main() will start execuing locked on the same OS thread. The Command() and similar options expect an argument that must be one of: - An EventHandler or a function literal of the same signature. - A func(). This can be used when the handler does not need the associated Event instance. When passing an argument of type time.Durarion to a function accepting 'any', the duration is converted to an integer number of milliseconds. When passing an argument of type image.Image to a function accepting 'any', the image is converted to a encoding/base64 encoded string of the PNG representation of the image. When passing an argument of type []byte to a function accepting 'any', the byte slice is converted to a encoding/base64 encoded string. When passing an argument of type []FileType to a function accepting 'any', the slice is converted to the representation the Tcl/Tk -filetypes option expects. At least some minimal knowledge of reading Tcl/Tk code is probably required for using this package and/or using the related documentation. However you will not need to write any Tcl code and you do not need to care about the grammar of Tcl words/string literals and how it differs from Go. There are several Tcl/Tk tutorials available, for example at tutorialspoint. Merge requests for known issues are always welcome. Please send merge requests for new features/APIs after filling and discussing the additions/changes at the issue tracker first. Most of the documentation is generated directly from the Tcl/Tk documentation and may not be entirely correct for the Go package. Those parts hopefully still serve as a quick/offline Tcl/Tk reference. Parts of the documentation are copied and/or modified from the tcl.tk site, see the LICENSE-TCLTK file for details. Parts of the documentation are copied and/or modified from the tkinter.ttk site which is You can support the maintenance and further development of this package at jnml's LiberaPay (using PayPal). "Checkbutton.indicator" style element options: "Combobox.downarrow" style element options: "Menubutton.indicator" style element options: "Radiobutton.indicator" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "Treeitem.indicator" style element options: "arrow" style element options: "border" style element options: "downarrow" style element options: "field" style element options: "leftarrow" style element options: "rightarrow" style element options: "slider" style element options: "thumb" style element options: "uparrow" style element options: "alt" theme style list Style map: -foreground {disabled #a3a3a3} -background {disabled #d9d9d9 active #ececec} -embossed {disabled 1} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Treeitem.separator -sticky nswe Layout: Button.border -sticky nswe -border 1 -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Style map: -highlightcolor {alternate black} -relief { {pressed !disabled} sunken {active !disabled} raised } Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Style map: -indicatorcolor {pressed #d9d9d9 alternate #aaaaaa disabled #d9d9d9} Layout: Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} -arrowcolor {disabled #a3a3a3} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} Layout: Labelframe.border -sticky nswe Layout: Menubutton.border -sticky nswe -children {Menubutton.focus -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -side left -sticky {}}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -expand {selected {1.5p 1.5p 0.75p 0}} -background {selected #d9d9d9} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} Style map: -indicatorcolor {pressed #d9d9d9 alternate #aaaaaa disabled #d9d9d9} - - Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} -arrowcolor {disabled #a3a3a3} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -relief {disabled flat selected sunken pressed sunken active raised} -background {pressed #c3c3c3 active #ececec} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled #a3a3a3 selected #ffffff} -background {disabled #d9d9d9 selected #4a6984} Layout: Treeitem.separator -sticky nswe "Button.button" style element options: "Checkbutton.button" style element options: "Combobox.button" style element options: "DisclosureButton.button" style element options: "Entry.field" style element options: "GradientButton.button" style element options: "HelpButton.button" style element options: "Horizontal.Scrollbar.leftarrow" style element options: "Horizontal.Scrollbar.rightarrow" style element options: "Horizontal.Scrollbar.thumb" style element options: "Horizontal.Scrollbar.trough" style element options: "InlineButton.button" style element options: "Labelframe.border" style element options: "Menubutton.button" style element options: "Notebook.client" style element options: "Notebook.tab" style element options: "Progressbar.track" style element options: "Radiobutton.button" style element options: "RecessedButton.button" style element options: "RoundedRectButton.button" style element options: "Scale.slider" style element options: "Scale.trough" style element options: "Searchbox.field" style element options: "SidebarButton.button" style element options: "Spinbox.downarrow" style element options: "Spinbox.field" style element options: "Spinbox.uparrow" style element options: "Toolbar.background" style element options: "Toolbutton.border" style element options: "Treeheading.cell" style element options: "Treeitem.indicator" style element options: "Treeview.treearea" style element options: "Vertical.Scrollbar.downarrow" style element options: "Vertical.Scrollbar.thumb" style element options: "Vertical.Scrollbar.trough" style element options: "Vertical.Scrollbar.uparrow" style element options: "background" style element options: "field" style element options: "fill" style element options: "hseparator" style element options: "separator" style element options: "sizegrip" style element options: "vseparator" style element options: "aqua" theme style list Style map: -selectforeground { background systemSelectedTextColor !focus systemSelectedTextColor} -foreground { disabled systemDisabledControlTextColor background systemLabelColor} -selectbackground { background systemSelectedTextBackgroundColor !focus systemSelectedTextBackgroundColor} Layout: DisclosureButton.button -sticky nswe Layout: GradientButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Layout: Treeheading.cell -sticky nswe Treeheading.image -side right -sticky {} Treeheading.text -side top -sticky {} Layout: HelpButton.button -sticky nswe Layout: Horizontal.Scrollbar.trough -sticky we -children {Horizontal.Scrollbar.thumb -sticky nswe Horizontal.Scrollbar.rightarrow -side right -sticky {} Horizontal.Scrollbar.leftarrow -side right -sticky {}} Layout: Button.padding -sticky nswe -children {Button.label -sticky nswe} Style map: -foreground { pressed systemLabelColor !pressed systemSecondaryLabelColor } Layout: InlineButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -foreground { disabled systemWindowBackgroundColor } Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -side left -sticky {}} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: RecessedButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -font { selected RecessedFont active RecessedFont pressed RecessedFont } -foreground { {disabled selected} systemWindowBackgroundColor3 {disabled !selected} systemDisabledControlTextColor selected systemTextBackgroundColor active white pressed white } Layout: RoundedRectButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Layout: Searchbox.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Layout: SidebarButton.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -foreground { {disabled selected} systemWindowBackgroundColor3 {disabled !selected} systemDisabledControlTextColor selected systemTextColor active systemTextColor pressed systemTextColor } Layout: Button.button -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -foreground { pressed white {alternate !pressed !background} white disabled systemDisabledControlTextColor} Layout: Checkbutton.button -sticky nswe -children {Checkbutton.padding -sticky nswe -children {Checkbutton.label -side left -sticky {}}} Layout: Combobox.button -sticky nswe -children {Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}} Style map: -foreground { disabled systemDisabledControlTextColor } -selectbackground { !focus systemUnemphasizedSelectedTextBackgroundColor } Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -foreground { disabled systemDisabledControlTextColor } -selectbackground { !focus systemUnemphasizedSelectedTextBackgroundColor } Layout: Labelframe.border -sticky nswe Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Menubutton.button -sticky nswe -children {Menubutton.padding -sticky nswe -children {Menubutton.label -side left -sticky {}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -sticky nswe -children {Notebook.label -sticky nswe}} Style map: -foreground { {background !selected} systemControlTextColor {background selected} black {!background selected} systemSelectedTabTextColor disabled systemDisabledControlTextColor} Layout: Progressbar.track -sticky nswe Layout: Radiobutton.button -sticky nswe -children {Radiobutton.padding -sticky nswe -children {Radiobutton.label -side left -sticky {}}} - Layout: Spinbox.buttons -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.field -sticky we -children {Spinbox.textarea -sticky we} Style map: -foreground { disabled systemDisabledControlTextColor } -selectbackground { !focus systemUnemphasizedSelectedTextBackgroundColor } Layout: Notebook.tab -sticky nswe -children {Notebook.padding -sticky nswe -children {Notebook.label -sticky nswe}} Layout: Toolbar.background -sticky nswe Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Layout: Treeview.field -sticky nswe -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -background { selected systemSelectedTextBackgroundColor } Layout: Vertical.Scrollbar.trough -sticky ns -children {Vertical.Scrollbar.thumb -sticky nswe Vertical.Scrollbar.downarrow -side bottom -sticky {} Vertical.Scrollbar.uparrow -side bottom -sticky {}} "Checkbutton.indicator" style element options: "Combobox.field" style element options: "Radiobutton.indicator" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "arrow" style element options: "bar" style element options: "border" style element options: "client" style element options: "downarrow" style element options: "field" style element options: "hgrip" style element options: "leftarrow" style element options: "pbar" style element options: "rightarrow" style element options: "slider" style element options: "tab" style element options: "thumb" style element options: "trough" style element options: "uparrow" style element options: "vgrip" style element options: "clam" theme style list Style map: -selectforeground {!focus white} -foreground {disabled #999999} -selectbackground {!focus #9e9a91} -background {disabled #dcdad5 active #eeebe7} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Sash.hsash -sticky nswe -children {Sash.hgrip -sticky nswe} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} - Layout: Treeitem.separator -sticky nswe Layout: Button.border -sticky nswe -border 1 -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Style map: -lightcolor {pressed #bab5ab} -background {disabled #dcdad5 pressed #bab5ab active #eeebe7} -bordercolor {alternate #000000} -darkcolor {pressed #bab5ab} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Style map: -indicatorbackground {pressed #dcdad5 {!disabled alternate} #5895bc {disabled alternate} #a0a0a0 disabled #dcdad5} Layout: Combobox.downarrow -side right -sticky ns Combobox.field -sticky nswe -children {Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}} Style map: -foreground {{readonly focus} #ffffff} -fieldbackground {{readonly focus} #4a6984 readonly #dcdad5} -background {active #eeebe7 pressed #eeebe7} -bordercolor {focus #4a6984} -arrowcolor {disabled #999999} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -lightcolor {focus #6f9dc6} -background {readonly #dcdad5} -bordercolor {focus #4a6984} Layout: Labelframe.border -sticky nswe Layout: Menubutton.border -sticky nswe -children {Menubutton.focus -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -side left -sticky {}}}} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -lightcolor {selected #eeebe7 {} #cfcdc8} -padding {selected {4.5p 3p 4.5p 1.5p}} -background {selected #dcdad5 {} #bab5ab} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} Style map: -indicatorbackground {pressed #dcdad5 {!disabled alternate} #5895bc {disabled alternate} #a0a0a0 disabled #dcdad5} - - Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Style map: -background {readonly #dcdad5} -bordercolor {focus #4a6984} -arrowcolor {disabled #999999} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -lightcolor {pressed #bab5ab} -relief {disabled flat selected sunken pressed sunken active raised} -background {disabled #dcdad5 pressed #bab5ab active #eeebe7} -darkcolor {pressed #bab5ab} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled #999999 selected #ffffff} -background {disabled #dcdad5 selected #4a6984} -bordercolor {focus #4a6984} Layout: Treeitem.separator -sticky nswe Layout: Sash.vsash -sticky nswe -children {Sash.vgrip -sticky nswe} "Button.border" style element options: "Checkbutton.indicator" style element options: "Combobox.downarrow" style element options: "Menubutton.indicator" style element options: "Radiobutton.indicator" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "arrow" style element options: "downarrow" style element options: "highlight" style element options: "hsash" style element options: "leftarrow" style element options: "rightarrow" style element options: "slider" style element options: "uparrow" style element options: "vsash" style element options: "classic" theme style list Style map: -highlightcolor {focus black} -foreground {disabled #a3a3a3} -background {disabled #d9d9d9 active #ececec} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Horizontal.Scale.highlight -sticky nswe -children {Horizontal.Scale.trough -sticky nswe -children {Horizontal.Scale.slider -side left -sticky {}}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} - Layout: Treeitem.separator -sticky nswe Layout: Button.highlight -sticky nswe -children {Button.border -sticky nswe -border 1 -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Style map: -relief {{!disabled pressed} sunken} Layout: Checkbutton.highlight -sticky nswe -children {Checkbutton.border -sticky nswe -children {Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.label -side left -sticky nswe}}} Style map: -indicatorrelief {alternate raised selected sunken pressed sunken} -indicatorcolor {pressed #d9d9d9 alternate #b05e5e selected #b03060} Layout: Combobox.highlight -sticky nswe -children {Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} Layout: Entry.highlight -sticky nswe -children {Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} Layout: Labelframe.border -sticky nswe Layout: Menubutton.highlight -sticky nswe -children {Menubutton.border -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -sticky {}}}} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -background {selected #d9d9d9} - Layout: Radiobutton.highlight -sticky nswe -children {Radiobutton.border -sticky nswe -children {Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.label -side left -sticky nswe}}} Style map: -indicatorrelief {alternate raised selected sunken pressed sunken} -indicatorcolor {pressed #d9d9d9 alternate #b05e5e selected #b03060} Style map: -sliderrelief {{pressed !disabled} sunken} Style map: -relief {{pressed !disabled} sunken} Layout: Spinbox.highlight -sticky nswe -children {Spinbox.field -sticky nswe -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}}} Style map: -fieldbackground {readonly #d9d9d9 disabled #d9d9d9} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.focus -sticky nswe -children {Toolbutton.border -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -relief {disabled flat selected sunken pressed sunken active raised} -background {pressed #b3b3b3 active #ececec} Layout: Treeview.highlight -sticky nswe -children {Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}}} Style map: -foreground {disabled #a3a3a3 selected #000000} -background {disabled #d9d9d9 selected #c3c3c3} Layout: Treeitem.separator -sticky nswe Layout: Vertical.Scale.highlight -sticky nswe -children {Vertical.Scale.trough -sticky nswe -children {Vertical.Scale.slider -side top -sticky {}}} "" style element options: "Checkbutton.indicator" style element options: "Combobox.downarrow" style element options: "Menubutton.indicator" style element options: "Radiobutton.indicator" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "Treeheading.cell" style element options: "Treeitem.indicator" style element options: "Treeitem.row" style element options: "Treeitem.separator" style element options: "arrow" style element options: "background" style element options: "border" style element options: "client" style element options: "ctext" style element options: "downarrow" style element options: "field" style element options: "fill" style element options: "focus" style element options: "hsash" style element options: "hseparator" style element options: "image" style element options: "indicator" style element options: "label" style element options: "leftarrow" style element options: "padding" style element options: "pbar" style element options: "rightarrow" style element options: "separator" style element options: "sizegrip" style element options: "slider" style element options: "tab" style element options: "text" style element options: "textarea" style element options: "thumb" style element options: "treearea" style element options: "trough" style element options: "uparrow" style element options: "vsash" style element options: "vseparator" style element options: "default" theme style list Style map: -foreground {disabled #a3a3a3} -background {disabled #edeceb active #ececec} Layout: Treedata.padding -sticky nswe -children {Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Sash.hsash -sticky we Layout: Horizontal.Progressbar.trough -sticky nswe -children {Horizontal.Progressbar.pbar -side left -sticky ns Horizontal.Progressbar.ctext -side left -sticky {}} Layout: Horizontal.Scale.focus -sticky nswe -children {Horizontal.Scale.padding -sticky nswe -children {Horizontal.Scale.trough -sticky nswe -children {Horizontal.Scale.slider -side left -sticky {}}}} Layout: Horizontal.Scrollbar.trough -sticky we -children {Horizontal.Scrollbar.leftarrow -side left -sticky {} Horizontal.Scrollbar.rightarrow -side right -sticky {} Horizontal.Scrollbar.thumb -sticky nswe} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Treeitem.row -sticky nswe - Layout: Treeitem.separator -sticky nswe Layout: Button.border -sticky nswe -border 1 -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Style map: -relief {{!disabled pressed} sunken} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Style map: -indicatorbackground {{alternate disabled} #a3a3a3 {alternate pressed} #5895bc alternate #4a6984 {selected disabled} #a3a3a3 {selected pressed} #5895bc selected #4a6984 disabled #edeceb pressed #c3c3c3} Layout: Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.textarea -sticky nswe}} Style map: -fieldbackground {readonly #edeceb disabled #edeceb} -arrowcolor {disabled #a3a3a3} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -fieldbackground {readonly #edeceb disabled #edeceb} Layout: Frame.border -sticky nswe Layout: Label.border -sticky nswe -border 1 -children {Label.padding -sticky nswe -border 1 -children {Label.label -sticky nswe}} Layout: Labelframe.border -sticky nswe Layout: Menubutton.border -sticky nswe -children {Menubutton.focus -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -side left -sticky {}}}} Style map: -arrowcolor {disabled #a3a3a3} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -highlightcolor {selected #4a6984} -highlight {selected 1} -background {selected #edeceb} Layout: Panedwindow.background -sticky {} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} Style map: -indicatorbackground {{alternate disabled} #a3a3a3 {alternate pressed} #5895bc alternate #4a6984 {selected disabled} #a3a3a3 {selected pressed} #5895bc selected #4a6984 disabled #edeceb pressed #c3c3c3} Style map: -outercolor {active #ececec} Style map: -arrowcolor {disabled #a3a3a3} Layout: Separator.separator -sticky nswe Layout: Sizegrip.sizegrip -side bottom -sticky se Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Style map: -fieldbackground {readonly #edeceb disabled #edeceb} -arrowcolor {disabled #a3a3a3} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -relief {disabled flat selected sunken pressed sunken active raised} -background {pressed #c3c3c3 active #ececec} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled #a3a3a3 selected #ffffff} -background {disabled #edeceb selected #4a6984} Layout: Treeitem.separator -sticky nswe Layout: Sash.vsash -sticky ns Layout: Vertical.Progressbar.trough -sticky nswe -children {Vertical.Progressbar.pbar -side bottom -sticky we} Layout: Vertical.Scale.focus -sticky nswe -children {Vertical.Scale.padding -sticky nswe -children {Vertical.Scale.trough -sticky nswe -children {Vertical.Scale.slider -side top -sticky {}}}} Layout: Vertical.Scrollbar.trough -sticky ns -children {Vertical.Scrollbar.uparrow -side top -sticky {} Vertical.Scrollbar.downarrow -side bottom -sticky {} Vertical.Scrollbar.thumb -sticky nswe}PASS "Combobox.background" style element options: "Combobox.border" style element options: "Combobox.rightdownarrow" style element options: "ComboboxPopdownFrame.background" style element options: "Entry.background" style element options: "Entry.field" style element options: "Horizontal.Progressbar.pbar" style element options: "Horizontal.Scale.slider" style element options: "Horizontal.Scrollbar.grip" style element options: "Horizontal.Scrollbar.leftarrow" style element options: "Horizontal.Scrollbar.rightarrow" style element options: "Horizontal.Scrollbar.thumb" style element options: "Horizontal.Scrollbar.trough" style element options: "Menubutton.dropdown" style element options: "Spinbox.background" style element options: "Spinbox.downarrow" style element options: "Spinbox.field" style element options: "Spinbox.innerbg" style element options: "Spinbox.uparrow" style element options: "Vertical.Progressbar.pbar" style element options: "Vertical.Scale.slider" style element options: "Vertical.Scrollbar.downarrow" style element options: "Vertical.Scrollbar.grip" style element options: "Vertical.Scrollbar.thumb" style element options: "Vertical.Scrollbar.trough" style element options: "Vertical.Scrollbar.uparrow" style element options: "vista" theme style list Style map: -foreground {disabled SystemGrayText} Layout: ComboboxPopdownFrame.background -sticky nswe -border 1 -children {ComboboxPopdownFrame.padding -sticky nswe} Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Horizontal.Progressbar.trough -sticky nswe -children {Horizontal.Progressbar.pbar -side left -sticky ns Horizontal.Progressbar.ctext -sticky nswe} Layout: Scale.focus -sticky nswe -children {Horizontal.Scale.trough -sticky nswe -children {Horizontal.Scale.track -sticky we Horizontal.Scale.slider -side left -sticky {}}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Treeitem.separator -sticky nswe Layout: Button.button -sticky nswe -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Layout: Combobox.border -sticky nswe -children {Combobox.rightdownarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.background -sticky nswe -children {Combobox.focus -sticky nswe -children {Combobox.textarea -sticky nswe}}}} Style map: -focusfill {{readonly focus} SystemHighlight} -foreground {disabled SystemGrayText {readonly focus} SystemHighlightText} -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Entry.field -sticky nswe -children {Entry.background -sticky nswe -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Menubutton.dropdown -side right -sticky ns Menubutton.button -sticky nswe -children {Menubutton.padding -sticky we -children {Menubutton.label -sticky {}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -expand {selected {2 2 2 2}} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} - Layout: Spinbox.field -sticky nswe -children {Spinbox.background -sticky nswe -children {Spinbox.padding -sticky nswe -children {Spinbox.innerbg -sticky nswe -children {Spinbox.textarea -sticky nswe}} Spinbox.uparrow -side top -sticky nse Spinbox.downarrow -side bottom -sticky nse}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled SystemGrayText selected SystemHighlightText} -background {disabled SystemButtonFace selected SystemHighlight} Layout: Treeitem.separator -sticky nswe Layout: Vertical.Progressbar.trough -sticky nswe -children {Vertical.Progressbar.pbar -side bottom -sticky we} Layout: Scale.focus -sticky nswe -children {Vertical.Scale.trough -sticky nswe -children {Vertical.Scale.track -sticky ns Vertical.Scale.slider -side top -sticky {}}} "Button.border" style element options: "Checkbutton.indicator" style element options: "Combobox.focus" style element options: "ComboboxPopdownFrame.border" style element options: "Radiobutton.indicator" style element options: "Scrollbar.trough" style element options: "Spinbox.downarrow" style element options: "Spinbox.uparrow" style element options: "border" style element options: "client" style element options: "downarrow" style element options: "field" style element options: "focus" style element options: "leftarrow" style element options: "rightarrow" style element options: "sizegrip" style element options: "slider" style element options: "tab" style element options: "thumb" style element options: "uparrow" style element options: "winnative" theme style list Style map: -foreground {disabled SystemGrayText} -embossed {disabled 1} Layout: ComboboxPopdownFrame.border -sticky nswe Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Treeitem.separator -sticky nswe Layout: Button.border -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}} Style map: -relief {{!disabled pressed} sunken} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Layout: Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.focus -sticky nswe -children {Combobox.textarea -sticky nswe}}} Style map: -focusfill {{readonly focus} SystemHighlight} -foreground {disabled SystemGrayText {readonly focus} SystemHighlightText} -selectforeground {!focus SystemWindowText} -fieldbackground {readonly SystemButtonFace disabled SystemButtonFace} -selectbackground {!focus SystemWindow} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} -fieldbackground {readonly SystemButtonFace disabled SystemButtonFace} Layout: Labelframe.border -sticky nswe Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Menubutton.border -sticky nswe -children {Menubutton.focus -sticky nswe -children {Menubutton.indicator -side right -sticky {} Menubutton.padding -sticky we -children {Menubutton.label -side left -sticky {}}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -expand {selected {2 2 2 0}} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} - Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Style map: -relief {disabled flat selected sunken pressed sunken active raised} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled SystemGrayText selected SystemHighlightText} -background {disabled SystemButtonFace selected SystemHighlight} Layout: Treeitem.separator -sticky nswe "Button.button" style element options: "Checkbutton.indicator" style element options: "Combobox.downarrow" style element options: "Combobox.field" style element options: "Entry.field" style element options: "Horizontal.Progressbar.pbar" style element options: "Horizontal.Progressbar.trough" style element options: "Horizontal.Scale.slider" style element options: "Horizontal.Scale.track" style element options: "Horizontal.Scrollbar.grip" style element options: "Horizontal.Scrollbar.thumb" style element options: "Horizontal.Scrollbar.trough" style element options: "Labelframe.border" style element options: "Menubutton.button" style element options: "Menubutton.dropdown" style element options: "NotebookPane.background" style element options: "Radiobutton.indicator" style element options: "Scale.trough" style element options: "Scrollbar.downarrow" style element options: "Scrollbar.leftarrow" style element options: "Scrollbar.rightarrow" style element options: "Scrollbar.uparrow" style element options: "Spinbox.downarrow" style element options: "Spinbox.field" style element options: "Spinbox.uparrow" style element options: "Toolbutton.border" style element options: "Treeheading.border" style element options: "Treeitem.indicator" style element options: "Treeview.field" style element options: "Vertical.Progressbar.pbar" style element options: "Vertical.Progressbar.trough" style element options: "Vertical.Scale.slider" style element options: "Vertical.Scale.track" style element options: "Vertical.Scrollbar.grip" style element options: "Vertical.Scrollbar.thumb" style element options: "Vertical.Scrollbar.trough" style element options: "client" style element options: "sizegrip" style element options: "tab" style element options: "xpnative" theme style list Style map: -foreground {disabled SystemGrayText} Layout: Treeheading.cell -sticky nswe Treeheading.border -sticky nswe -children {Treeheading.padding -sticky nswe -children {Treeheading.image -side right -sticky {} Treeheading.text -sticky we}} Layout: Scale.focus -sticky nswe -children {Horizontal.Scale.trough -sticky nswe -children {Horizontal.Scale.track -sticky we Horizontal.Scale.slider -side left -sticky {}}} Layout: Horizontal.Scrollbar.trough -sticky we -children {Horizontal.Scrollbar.leftarrow -side left -sticky {} Horizontal.Scrollbar.rightarrow -side right -sticky {} Horizontal.Scrollbar.thumb -sticky nswe -unit 1 -children {Horizontal.Scrollbar.grip -sticky {}}} Layout: Treeitem.padding -sticky nswe -children {Treeitem.indicator -side left -sticky {} Treeitem.image -side left -sticky {} Treeitem.text -sticky nswe} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Treeitem.separator -sticky nswe Layout: Button.button -sticky nswe -children {Button.focus -sticky nswe -children {Button.padding -sticky nswe -children {Button.label -sticky nswe}}} Layout: Checkbutton.padding -sticky nswe -children {Checkbutton.indicator -side left -sticky {} Checkbutton.focus -side left -sticky w -children {Checkbutton.label -sticky nswe}} Layout: Combobox.field -sticky nswe -children {Combobox.downarrow -side right -sticky ns Combobox.padding -sticky nswe -children {Combobox.focus -sticky nswe -children {Combobox.textarea -sticky nswe}}} Style map: -focusfill {{readonly focus} SystemHighlight} -foreground {disabled SystemGrayText {readonly focus} SystemHighlightText} -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Entry.field -sticky nswe -border 1 -children {Entry.padding -sticky nswe -children {Entry.textarea -sticky nswe}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Label.fill -sticky nswe -children {Label.text -sticky nswe} Layout: Menubutton.dropdown -side right -sticky ns Menubutton.button -sticky nswe -children {Menubutton.padding -sticky we -children {Menubutton.label -sticky {}}} Layout: Notebook.client -sticky nswe Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Style map: -expand {selected {2 2 2 2}} - Layout: Radiobutton.padding -sticky nswe -children {Radiobutton.indicator -side left -sticky {} Radiobutton.focus -side left -sticky {} -children {Radiobutton.label -sticky nswe}} - - Layout: Spinbox.field -side top -sticky we -children {null -side right -sticky {} -children {Spinbox.uparrow -side top -sticky e Spinbox.downarrow -side bottom -sticky e} Spinbox.padding -sticky nswe -children {Spinbox.textarea -sticky nswe}} Style map: -selectforeground {!focus SystemWindowText} -selectbackground {!focus SystemWindow} Layout: Notebook.tab -sticky nswe -children {Notebook.padding -side top -sticky nswe -children {Notebook.focus -side top -sticky nswe -children {Notebook.label -side top -sticky {}}}} Layout: Toolbutton.border -sticky nswe -children {Toolbutton.focus -sticky nswe -children {Toolbutton.padding -sticky nswe -children {Toolbutton.label -sticky nswe}}} Layout: Treeview.field -sticky nswe -border 1 -children {Treeview.padding -sticky nswe -children {Treeview.treearea -sticky nswe}} Style map: -foreground {disabled SystemGrayText selected SystemHighlightText} -background {disabled SystemButtonFace selected SystemHighlight} Layout: Treeitem.separator -sticky nswe Layout: Scale.focus -sticky nswe -children {Vertical.Scale.trough -sticky nswe -children {Vertical.Scale.track -sticky ns Vertical.Scale.slider -side top -sticky {}}} Layout: Vertical.Scrollbar.trough -sticky ns -children {Vertical.Scrollbar.uparrow -side top -sticky {} Vertical.Scrollbar.downarrow -side bottom -sticky {} Vertical.Scrollbar.thumb -sticky nswe -unit 1 -children {Vertical.Scrollbar.grip -sticky {}}}PASS
Extensible Go library for creating fast, SSR-first frontend avoiding vanilla templating downsides. Creating asynchronous and dynamic layout parts is a complex problem for larger projects using `html/template`. Library tries to simplify this process. Let's go straight into a simple example. Then, we will dig into details, step by step, how it works. Kyoto provides a simple net/http handlers and function wrappers to handle pages rendering and serving. See functions inside of nethttp.go file for details and advanced usage. Example: Kyoto provides a way to define components. It's a very common approach for modern libraries to manage frontend parts. In kyoto each component is a context receiver, which returns it's state. Each component becomes a part of the page or top-level component, which executes component asynchronously and gets a state future object. In that way your components are executing in a non-blocking way. Pages are just top-level components, where you can configure rendering and page related stuff. Example: As an option, you can wrap component with another function to accept additional paramenters from top-level page/component. Example: Kyoto provides a context, which holds common objects like http.ResponseWriter, *http.Request, etc. See kyoto.Context for details. Example: Kyoto provides a set of parameters and functions to provide a comfortable template building process. You can configure template building parameters with kyoto.TemplateConf configuration. See template.go for available functions and kyoto.TemplateConfiguration for configuration details. Example: Kyoto provides a way to simplify building dynamic UIs. For this purpose it has a feature named actions. Logic is pretty simple. Client calls an action (sends a request to the server). Action is executing on server side and server is sending updated component markup to the client which will be morphed into DOM. That's it. To use actions, you need to go through a few steps. You'll need to include a client into page (JS functions for communication) and register an actions handler for a needed component. Let's start from including a client. Then, let's register an actions handler for a needed component. That's all! Now we ready to use actions to provide a dynamic UI. Example: In this example you can see provided modifications to the quick start example. First, we've added a state and name into our components' markup. In this way we are saving our components' state between actions and find a component root. Unfortunately, we have to manually provide a component name for now, we haven't found a way to provide it dynamically. Second, we've added a reload button with onclick function call. We're using a function Action provided by a client. Action triggering will be described in details later. Third, we've added an action handler inside of our component. This handler will be executed when a client calls an action with a corresponding name. It's highly recommended to keep components' state as small as possible. It will be transmitted on each action call. Kyoto have multiple ways to trigger actions. Now we will check them one by one. This is the simplest way to trigger an action. It's just a function call with a referer (usually 'this', f.e. button) as a first argument (used to determine root), action name as a second argument and arguments as a rest. Arguments must to be JSON serializable. It's possible to trigger an action of another component. If you want to call an action of parent component, use $ prefix in action name. If you want to call an action of component by id, use <id:action> as an action name. This is a specific action which is triggered when a form is submitted. Usually called in onsubmit="..." attribute of a form. You'll need to implement 'Submit' action to handle this trigger. This is a special HTML attribute which will trigger an action on page load. This may be useful for components' lazy loading. With this special HTML attributes you can trigger an action with interval. Useful for components that must to be updated over time (f.e. charts, stats, etc). You can use this trigger with ssa:poll and ssa:poll.interval HTML attributes. This one attribute allows you to trigger an action when an element is visible on the screen. May be useful for lazy loading. Kyoto provides a way to control action flow. For now, it's possible to control display style on component call and push multiple UI updates to the client during a single action. Because kyoto makes a roundtrip to the server every time an action is triggered on the page, there are cases where the page may not react immediately to a user event (like a click). That's why the library provides a way to easily control display attributes on action call. You can use this HTML attribute to control display during action call. At the end of an action the layout will be restored. A small note. Don't forget to set a default display for loading elements like spinners and loaders. You can push multiple component UI updates during a single action call. Just call kyoto.ActionFlush(ctx, state) to initiate an update. Kyoto provides a way to control action rendering. Now there is at least 2 rendering options after an action call: morph (default) and replace. Morph will try to morph received markup to the current one with morphdom library. In case of an error, or explicit "replace" mode, markup will be replaced with x.outerHTML = '...'.
Package rod is a high-level driver directly based on DevTools Protocol. This example opens https://github.com/, searches for "git", and then gets the header element which gives the description for Git. Rod use https://golang.org/pkg/context to handle cancellations for IO blocking operations, most times it's timeout. Context will be recursively passed to all sub-methods. For example, methods like Page.Context(ctx) will return a clone of the page with the ctx, all the methods of the returned page will use the ctx if they have IO blocking operations. Page.Timeout or Page.WithCancel is just a shortcut for Page.Context. Of course, Browser or Element works the same way. Shows how we can further customize the browser with the launcher library. Usually you use launcher lib to set the browser's command line flags (switches). Doc for flags: https://peter.sh/experiments/chromium-command-line-switches Shows how to change the retry/polling options that is used to query elements. This is useful when you want to customize the element query retry logic. When rod doesn't have a feature that you need. You can easily call the cdp to achieve it. List of cdp API: https://github.com/go-rod/rod/tree/main/lib/proto Shows how to disable headless mode and debug. Rod provides a lot of debug options, you can set them with setter methods or use environment variables. Doc for environment variables: https://pkg.go.dev/github.com/go-rod/rod/lib/defaults We use "Must" prefixed functions to write example code. But in production you may want to use the no-prefix version of them. About why we use "Must" as the prefix, it's similar to https://golang.org/pkg/regexp/#MustCompile Shows how to share a remote object reference between two Eval. Shows how to listen for events. Shows how to intercept requests and modify both the request and the response. The entire process of hijacking one request: The --req-> and --res-> are the parts that can be modified. Show how to handle multiple results of an action. Such as when you login a page, the result can be success or wrong password. Example_search shows how to use Search to get element inside nested iframes or shadow DOMs. It works the same as https://developers.google.com/web/tools/chrome-devtools/dom#search Shows how to update the state of the current page. In this example we enable the network domain. Rod uses mouse cursor to simulate clicks, so if a button is moving because of animation, the click may not work as expected. We usually use WaitStable to make sure the target isn't changing anymore. When you want to wait for an ajax request to complete, this example will be useful.
Package uinput is a pure go package that provides access to the userland input device driver uinput on linux systems. Virtual keyboard devices as well as virtual mouse input devices may be created using this package. The keycodes and other event definitions, that are available and can be used to trigger input events, are part of this package ("Key1" for number 1, for example). In order to use the virtual keyboard, you will need to follow these three steps: Initialize the device Example: vk, err := CreateKeyboard("/dev/uinput", "Virtual Keyboard") Send Button events to the device Example (print a single D): err = vk.KeyPress(uinput.KeyD) Example (keep moving right by holding down right arrow key): err = vk.KeyDown(uinput.KeyRight) Example (stop moving right by releasing the right arrow key): err = vk.KeyUp(uinput.KeyRight) Close the device Example: err = vk.Close() A virtual mouse input device is just as easy to create and use: Initialize the device: Example: vm, err := CreateMouse("/dev/uinput", "DangerMouse") Move the cursor around and issue click events Example (move mouse right): err = vm.MoveRight(42) Example (move mouse left): err = vm.MoveLeft(42) Example (move mouse up): err = vm.MoveUp(42) Example (move mouse down): err = vm.MoveDown(42) Example (trigger a left click): err = vm.LeftClick() Example (trigger a right click): err = vm.RightClick() Close the device Example: err = vm.Close() If you'd like to use absolute input events (move the cursor to specific positions on screen), use the touch pad. Note that you'll need to specify the size of the screen area you want to use when you initialize the device. Here are a few examples of how to use the virtual touch pad: Initialize the device: Example: vt, err := CreateTouchPad("/dev/uinput", "DontTouchThis", 0, 1024, 0, 768) Move the cursor around and issue click events Example (move cursor to the top left corner of the screen): err = vt.MoveTo(0, 0) Example (move cursor to the position x: 100, y: 250): err = vt.MoveTo(100, 250) Example (trigger a left click): err = vt.LeftClick() Example (trigger a right click): err = vt.RightClick() Close the device Example: err = vt.Close()
Package rod is a high-level driver directly based on DevTools Protocol. This example opens https://github.com/, searches for "git", and then gets the header element which gives the description for Git. Rod use https://golang.org/pkg/context to handle cancellations for IO blocking operations, most times it's timeout. Context will be recursively passed to all sub-methods. For example, methods like Page.Context(ctx) will return a clone of the page with the ctx, all the methods of the returned page will use the ctx if they have IO blocking operations. Page.Timeout or Page.WithCancel is just a shortcut for Page.Context. Of course, Browser or Element works the same way. Shows how we can further customize the browser with the launcher library. Usually you use launcher lib to set the browser's command line flags (switches). Doc for flags: https://peter.sh/experiments/chromium-command-line-switches Shows how to change the retry/polling options that is used to query elements. This is useful when you want to customize the element query retry logic. When rod doesn't have a feature that you need. You can easily call the cdp to achieve it. List of cdp API: https://github.com/yeyu12/rod/tree/main/lib/proto Shows how to disable headless mode and debug. Rod provides a lot of debug options, you can set them with setter methods or use environment variables. Doc for environment variables: https://pkg.go.dev/github.com/yeyu12/rod/lib/defaults We use "Must" prefixed functions to write example code. But in production you may want to use the no-prefix version of them. About why we use "Must" as the prefix, it's similar to https://golang.org/pkg/regexp/#MustCompile Shows how to share a remote object reference between two Eval. Shows how to listen for events. Shows how to intercept requests and modify both the request and the response. The entire process of hijacking one request: The --req-> and --res-> are the parts that can be modified. Show how to handle multiple results of an action. Such as when you login a page, the result can be success or wrong password. Example_search shows how to use Search to get element inside nested iframes or shadow DOMs. It works the same as https://developers.google.com/web/tools/chrome-devtools/dom#search Shows how to update the state of the current page. In this example we enable the network domain. Rod uses mouse cursor to simulate clicks, so if a button is moving because of animation, the click may not work as expected. We usually use WaitStable to make sure the target isn't changing anymore. When you want to wait for an ajax request to complete, this example will be useful.
Package gochrome aims to be a complete Chrome DevTools Protocol Viewer implementation. Versioned packages are available. Curently the only version is `tot` or Tip-of-Tree. Stable versions will be made available in the future. This is beta software and hasn't been well exercised in real-world applications. See https://chromedevtools.github.io/devtools-protocol/ The Chrome DevTools Protocol allows for tools to instrument, inspect, debug and profile Chromium, Chrome and other Blink-based browsers. Many existing projects currently use the protocol. The Chrome DevTools uses this protocol and the team maintains its API. Instrumentation is divided into a number of domains (DOM, Debugger, Network etc.). Each domain defines a number of commands it supports and events it generates. Both commands and events are serialized JSON objects of a fixed structure. You can either debug over the wire using the raw messages as they are described in the corresponding domain documentation, or use extension JavaScript API. The latest (tip-of-tree) protocol (tot) It changes frequently and can break at any time. However it captures the full capabilities of the Protocol, whereas the stable release is a subset. There is no backwards compatibility support guaranteed for the capabilities it introduces. Resources Basics: Using DevTools as protocol client The Developer Tools front-end can attach to a remotely running Chrome instance for debugging. For this scenario to work, you should start your host Chrome instance with the remote-debugging-port command line switch: Then you can start a separate client Chrome instance, using a distinct user profile: Now you can navigate to the given port from your client and attach to any of the discovered tabs for debugging: http://localhost:9222 You will find the Developer Tools interface identical to the embedded one and here is why: In this scenario, you can substitute Developer Tools front-end with your own implementation. Instead of navigating to the HTML page at http://localhost:9222, your application can discover available pages by requesting: http://localhost:9222/json and getting a JSON object with information about inspectable pages along with the WebSocket addresses that you could use in order to start instrumenting them. Remote debugging is especially useful when debugging remote instances of the browser or attaching to the embedded devices. Blink port owners are responsible for exposing debugging connections to the external users. This is especially handy to understand how the DevTools frontend makes use of the protocol. First, run Chrome with the debugging port open: Then, select the Chromium Projects item in the Inspectable Pages list. Now that DevTools is up and fullscreen, open DevTools to inspect it. Cmd-R in the new inspector to make the first restart. Now head to Network Panel, filter by Websocket, select the connection and click the Frames tab. Now you can easily see the frames of WebSocket activity as you use the first instance of the DevTools. To allow chrome extensions to interact with the protocol, we introduced chrome.debugger extension API that exposes this JSON message transport interface. As a result, you can not only attach to the remotely running Chrome instance, but also instrument it from its own extension. Chrome Debugger Extension API provides a higher level API where command domain, name and body are provided explicitly in the `sendCommand` call. This API hides request ids and handles binding of the request with its response, hence allowing `sendCommand` to report result in the callback function call. One can also use this API in combination with the other Extension APIs. If you are developing a Web-based IDE, you should implement an extension that exposes debugging capabilities to your page and your IDE will be able to open pages with the target application, set breakpoints there, evaluate expressions in console, live edit JavaScript and CSS, display live DOM, network interaction and any other aspect that Developer Tools is instrumenting today. Opening embedded Developer Tools will terminate the remote connection and thus detach the extension. https://chromedevtools.github.io/devtools-protocol/#simultaneous The canonical protocol definitions live in the Chromium source tree: (browser_protocol.json and js_protocol.json). They are maintained manually by the DevTools engineering team. These files are mirrored (hourly) on GitHub in the devtools-protocol repo. The declarative protocol definitions are used across tools. Within Chromium, a binding layer is created for the Chrome DevTools to interact with, and separately the protocol is used for Chrome Headless’s C++ interface. What’s the protocol_externs file It’s created via generate_protocol_externs.py and useful for tools using closure compiler. The TypeScript story is here. Not yet. See bugger-daemon’s third-party docs. See also the endpoints implementation in Chromium. /json/protocol was added in Chrome 60. The endpoint is exposed as webSocketDebuggerUrl in /json/version. Note the browser in the URL, rather than page. If Chrome was launched with --remote-debugging-port=0 and chose an open port, the browser endpoint is written to both stderr and the DevToolsActivePort file in browser profile folder. Yes, as of Chrome 63! See Multi-client remote debugging support. Upon disconnnection, the outgoing client will receive a detached event. For example: View the enum of possible reasons. (For reference: the original patch). After disconnection, some apps have chosen to pause their state and offer a reconnect button.
Extensible Go library for creating fast, SSR-first frontend avoiding vanilla templating downsides. Creating asynchronous and dynamic layout parts is a complex problem for larger projects using `html/template`. Library tries to simplify this process. Let's go straight into a simple example. Then, we will dig into details, step by step, how it works. Kyoto provides a simple net/http handlers and function wrappers to handle pages rendering and serving. See functions inside of nethttp.go file for details and advanced usage. Example: Kyoto provides a way to define components. It's a very common approach for modern libraries to manage frontend parts. In kyoto each component is a context receiver, which returns it's state. Each component becomes a part of the page or top-level component, which executes component asynchronously and gets a state future object. In that way your components are executing in a non-blocking way. Pages are just top-level components, where you can configure rendering and page related stuff. Example: As an option, you can wrap component with another function to accept additional paramenters from top-level page/component. Example: Kyoto provides a context, which holds common objects like http.ResponseWriter, *http.Request, etc. See kyoto.Context for details. Example: Kyoto provides a set of parameters and functions to provide a comfortable template building process. You can configure template building parameters with kyoto.TemplateConf configuration. See template.go for available functions and kyoto.TemplateConfiguration for configuration details. Example: Kyoto provides a way to simplify building dynamic UIs. For this purpose it has a feature named actions. Logic is pretty simple. Client calls an action (sends a request to the server). Action is executing on server side and server is sending updated component markup to the client which will be morphed into DOM. That's it. To use actions, you need to go through a few steps. You'll need to include a client into page (JS functions for communication) and register an actions handler for a needed component. Let's start from including a client. Then, let's register an actions handler for a needed component. That's all! Now we ready to use actions to provide a dynamic UI. Example: In this example you can see provided modifications to the quick start example. First, we've added a state and name into our components' markup. In this way we are saving our components' state between actions and find a component root. Unfortunately, we have to manually provide a component name for now, we haven't found a way to provide it dynamically. Second, we've added a reload button with onclick function call. We're using a function Action provided by a client. Action triggering will be described in details later. Third, we've added an action handler inside of our component. This handler will be executed when a client calls an action with a corresponding name. It's highly recommended to keep components' state as small as possible. It will be transmitted on each action call. Kyoto have multiple ways to trigger actions. Now we will check them one by one. This is the simplest way to trigger an action. It's just a function call with a referer (usually 'this', f.e. button) as a first argument (used to determine root), action name as a second argument and arguments as a rest. Arguments must to be JSON serializable. It's possible to trigger an action of another component. If you want to call an action of parent component, use $ prefix in action name. If you want to call an action of component by id, use <id:action> as an action name. This is a specific action which is triggered when a form is submitted. Usually called in onsubmit="..." attribute of a form. You'll need to implement 'Submit' action to handle this trigger. This is a special HTML attribute which will trigger an action on page load. This may be useful for components' lazy loading. With this special HTML attributes you can trigger an action with interval. Useful for components that must to be updated over time (f.e. charts, stats, etc). You can use this trigger with ssa:poll and ssa:poll.interval HTML attributes. This one attribute allows you to trigger an action when an element is visible on the screen. May be useful for lazy loading. Kyoto provides a way to control action flow. For now, it's possible to control display style on component call and push multiple UI updates to the client during a single action. Because kyoto makes a roundtrip to the server every time an action is triggered on the page, there are cases where the page may not react immediately to a user event (like a click). That's why the library provides a way to easily control display attributes on action call. You can use this HTML attribute to control display during action call. At the end of an action the layout will be restored. A small note. Don't forget to set a default display for loading elements like spinners and loaders. You can push multiple component UI updates during a single action call. Just call kyoto.ActionFlush(ctx, state) to initiate an update. Kyoto provides a way to control action rendering. Now there is at least 2 rendering options after an action call: morph (default) and replace. Morph will try to morph received markup to the current one with morphdom library. In case of an error, or explicit "replace" mode, markup will be replaced with x.outerHTML = '...'.
Extensible Go library for creating fast, SSR-first frontend avoiding vanilla templating downsides. Creating asynchronous and dynamic layout parts is a complex problem for larger projects using `html/template`. Library tries to simplify this process. Let's go straight into a simple example. Then, we will dig into details, step by step, how it works. Kyoto provides a simple net/http handlers and function wrappers to handle pages rendering and serving. See functions inside of nethttp.go file for details and advanced usage. Example: Kyoto provides a way to define components. It's a very common approach for modern libraries to manage frontend parts. In kyoto each component is a context receiver, which returns it's state. Each component becomes a part of the page or top-level component, which executes component asynchronously and gets a state future object. In that way your components are executing in a non-blocking way. Pages are just top-level components, where you can configure rendering and page related stuff. Example: As an option, you can wrap component with another function to accept additional paramenters from top-level page/component. Example: Kyoto provides a context, which holds common objects like http.ResponseWriter, *http.Request, etc. See kyoto.Context for details. Example: Kyoto provides a set of parameters and functions to provide a comfortable template building process. You can configure template building parameters with kyoto.TemplateConf configuration. See template.go for available functions and kyoto.TemplateConfiguration for configuration details. Example: Kyoto provides a way to simplify building dynamic UIs. For this purpose it has a feature named actions. Logic is pretty simple. Client calls an action (sends a request to the server). Action is executing on server side and server is sending updated component markup to the client which will be morphed into DOM. That's it. To use actions, you need to go through a few steps. You'll need to include a client into page (JS functions for communication) and register an actions handler for a needed component. Let's start from including a client. Then, let's register an actions handler for a needed component. That's all! Now we ready to use actions to provide a dynamic UI. Example: In this example you can see provided modifications to the quick start example. First, we've added a state and name into our components' markup. In this way we are saving our components' state between actions and find a component root. Unfortunately, we have to manually provide a component name for now, we haven't found a way to provide it dynamically. Second, we've added a reload button with onclick function call. We're using a function Action provided by a client. Action triggering will be described in details later. Third, we've added an action handler inside of our component. This handler will be executed when a client calls an action with a corresponding name. It's highly recommended to keep components' state as small as possible. It will be transmitted on each action call. Kyoto have multiple ways to trigger actions. Now we will check them one by one. This is the simplest way to trigger an action. It's just a function call with a referer (usually 'this', f.e. button) as a first argument (used to determine root), action name as a second argument and arguments as a rest. Arguments must to be JSON serializable. It's possible to trigger an action of another component. If you want to call an action of parent component, use $ prefix in action name. If you want to call an action of component by id, use <id:action> as an action name. This is a specific action which is triggered when a form is submitted. Usually called in onsubmit="..." attribute of a form. You'll need to implement 'Submit' action to handle this trigger. This is a special HTML attribute which will trigger an action on page load. This may be useful for components' lazy loading. With this special HTML attributes you can trigger an action with interval. Useful for components that must to be updated over time (f.e. charts, stats, etc). You can use this trigger with ssa:poll and ssa:poll.interval HTML attributes. This one attribute allows you to trigger an action when an element is visible on the screen. May be useful for lazy loading. Kyoto provides a way to control action flow. For now, it's possible to control display style on component call and push multiple UI updates to the client during a single action. Because kyoto makes a roundtrip to the server every time an action is triggered on the page, there are cases where the page may not react immediately to a user event (like a click). That's why the library provides a way to easily control display attributes on action call. You can use this HTML attribute to control display during action call. At the end of an action the layout will be restored. A small note. Don't forget to set a default display for loading elements like spinners and loaders. You can push multiple component UI updates during a single action call. Just call kyoto.ActionFlush(ctx, state) to initiate an update. Kyoto provides a way to control action rendering. Now there is at least 2 rendering options after an action call: morph (default) and replace. Morph will try to morph received markup to the current one with morphdom library. In case of an error, or explicit "replace" mode, markup will be replaced with x.outerHTML = '...'.
Extensible Go library for creating fast, SSR-first frontend avoiding vanilla templating downsides. Creating asynchronous and dynamic layout parts is a complex problem for larger projects using `html/template`. This library tries to simplify overall setup and process. Let's go straight into a simple example. Then, we will dig into details, step by step, how it works. Kyoto provides a set of simple net/http handlers, handler builders and function wrappers to provide serving, pages rendering, component actions, etc. Anyway, this is not an ultimative solution for any case. If you ever need to wrap/extend existing functionality, library encourages this. See functions inside of nethttp.go file for details and advanced usage. Example: Kyoto provides a way to define components. It's a very common approach for modern libraries to manage frontend parts. In kyoto each component is a context receiver, which returns it's state. Each component becomes a part of the page or top-level component, which executes component asynchronously and gets a state future object. In that way your components are executing in a non-blocking way. Pages are just top-level components, where you can configure rendering and page related stuff. Example: As an option, you can wrap component with another function to accept additional paramenters from top-level page/component. Example: Kyoto provides a context, which holds common objects like http.ResponseWriter, *http.Request, etc. See kyoto.Context for details. Example: Kyoto provides a set of parameters and functions to provide a comfortable template building process. You can configure template building parameters with kyoto.TemplateConf configuration. See template.go for available functions and kyoto.TemplateConfiguration for configuration details. Example: Kyoto provides a way to simplify building dynamic UIs. For this purpose it has a feature named actions. Logic is pretty simple. Client calls an action (sends a request to the server). Action is executing on server side and server is sending updated component markup to the client which will be morphed into DOM. That's it. To use actions, you need to go through a few steps. You'll need to include a client into page (JS functions for communication) and register an actions handler for a needed component. Let's start from including a client. Then, let's register an actions handler for a needed component. That's all! Now we ready to use actions to provide a dynamic UI. Example: In this example you can see provided modifications to the quick start example. First, we've added a state and name into our components' markup. In this way we are saving our components' state between actions and find a component root. Unfortunately, we have to manually provide a component name for now, we haven't found a way to provide it dynamically. Second, we've added a reload button with onclick function call. We're using a function Action provided by a client. Action triggering will be described in details later. Third, we've added an action handler inside of our component. This handler will be executed when a client calls an action with a corresponding name. It's highly recommended to keep components' state as small as possible. It will be transmitted on each action call. Kyoto have multiple ways to trigger actions. Now we will check them one by one. This is the simplest way to trigger an action. It's just a function call with a referer (usually 'this', f.e. button) as a first argument (used to determine root), action name as a second argument and arguments as a rest. Arguments must to be JSON serializable. It's possible to trigger an action of another component. If you want to call an action of parent component, use $ prefix in action name. If you want to call an action of component by id, use <id:action> as an action name. This is a specific action which is triggered when a form is submitted. Usually called in onsubmit="..." attribute of a form. You'll need to implement 'Submit' action to handle this trigger. This is a special HTML attribute which will trigger an action on page load. This may be useful for components' lazy loading. With this special HTML attributes you can trigger an action with interval. Useful for components that must to be updated over time (f.e. charts, stats, etc). You can use this trigger with ssa:poll and ssa:poll.interval HTML attributes. This one attribute allows you to trigger an action when an element is visible on the screen. May be useful for lazy loading. Kyoto provides a way to control action flow. For now, it's possible to control display style on component call and push multiple UI updates to the client during a single action. Because kyoto makes a roundtrip to the server every time an action is triggered on the page, there are cases where the page may not react immediately to a user event (like a click). That's why the library provides a way to easily control display attributes on action call. You can use this HTML attribute to control display during action call. At the end of an action the layout will be restored. A small note. Don't forget to set a default display for loading elements like spinners and loaders. You can push multiple component UI updates during a single action call. Just call kyoto.ActionFlush(ctx, state) to initiate an update. Kyoto provides a way to control action rendering. Now there is at least 2 rendering options after an action call: morph (default) and replace. Morph will try to morph received markup to the current one with morphdom library. In case of an error, or explicit "replace" mode, markup will be replaced with x.outerHTML = '...'.
Package rod is a high-level driver directly based on DevTools Protocol. This example opens https://github.com/, searches for "git", and then gets the header element which gives the description for Git. Rod use https://golang.org/pkg/context to handle cancellations for IO blocking operations, most times it's timeout. Context will be recursively passed to all sub-methods. For example, methods like Page.Context(ctx) will return a clone of the page with the ctx, all the methods of the returned page will use the ctx if they have IO blocking operations. Page.Timeout or Page.WithCancel is just a shortcut for Page.Context. Of course, Browser or Element works the same way. Shows how we can further customize the browser with the launcher library. Usually you use launcher lib to set the browser's command line flags (switches). Doc for flags: https://peter.sh/experiments/chromium-command-line-switches Shows how to change the retry/polling options that is used to query elements. This is useful when you want to customize the element query retry logic. When rod doesn't have a feature that you need. You can easily call the cdp to achieve it. List of cdp API: https://github.com/go-rod/rod/tree/main/lib/proto Shows how to disable headless mode and debug. Rod provides a lot of debug options, you can set them with setter methods or use environment variables. Doc for environment variables: https://pkg.go.dev/github.com/go-rod/rod/lib/defaults We use "Must" prefixed functions to write example code. But in production you may want to use the no-prefix version of them. About why we use "Must" as the prefix, it's similar to https://golang.org/pkg/regexp/#MustCompile Shows how to share a remote object reference between two Eval. Shows how to listen for events. Shows how to intercept requests and modify both the request and the response. The entire process of hijacking one request: The --req-> and --res-> are the parts that can be modified. Show how to handle multiple results of an action. Such as when you login a page, the result can be success or wrong password. Example_search shows how to use Search to get element inside nested iframes or shadow DOMs. It works the same as https://developers.google.com/web/tools/chrome-devtools/dom#search Shows how to update the state of the current page. In this example we enable the network domain. Rod uses mouse cursor to simulate clicks, so if a button is moving because of animation, the click may not work as expected. We usually use WaitStable to make sure the target isn't changing anymore. When you want to wait for an ajax request to complete, this example will be useful.
Package Authaus is an authentication and authorization system. Authaus brings together the following pluggable components: Any of these five components can be swapped out, and in fact the fourth, and fifth ones (Role Groups and User Store) are entirely optional. A typical setup is to use LDAP as an Authenticator, and Postgres as a Session, Permit, and Role Groups database. Your session database does not need to be particularly performant, since Authaus maintains an in-process cache of session keys and their associated tokens. Authaus was NOT designed to be a "Facebook Scale" system. The target audience is a system of perhaps 100,000 users. There is nothing fundamentally limiting about the API of Authaus, but the internals certainly have not been built with millions of users in mind. The intended usage model is this: Authaus is intended to be embedded inside your security system, and run as a standalone HTTP service (aka a REST service). This HTTP service CAN be open to the wide world, but it's also completely OK to let it listen only to servers inside your DMZ. Authaus only gives you the skeleton and some examples of HTTP responders. It's up to you to flesh out the details of your authentication HTTP interface, and whether you'd like that to face the world, or whether it should only be accessible via other services that you control. At startup, your services open an HTTP connection to the Authaus service. This connection will typically live for the duration of the service. For every incoming request, you peel off whatever authentication information is associated with that request. This is either a session key, or a username/password combination. Let's call it the authorization information. You then ask Authaus to tell you WHO this authorization information belongs to, as well as WHAT this authorization information allows the requester to do (ie Authentication and Authorization). Authaus responds either with a 401 (Unauthorized), 403 (Forbidden), or a 200 (OK) and a JSON object that tells you the identity of the agent submitting this request, as well the permissions that this agent posesses. It's up to your individual services to decide what to do with that information. It should be very easy to expose Authaus over a protocol other than HTTP, since Authaus is intended to be easy to embed. The HTTP API is merely an illustrative example. A `Session Key` is the long random number that is typically stored as a cookie. A `Permit` is a set of roles that has been granted to a user. Authaus knows nothing about the contents of a permit. It simply treats it as a binary blob, and when writing it to an SQL database, encodes it as base64. The interpretation of the permit is application dependent. Typically, a Permit will hold information such as "Allowed to view billing information", or "Allowed to paint your bathroom yellow". Authaus does have a built-in module called RoleGroupDB, which has its own interpretation of what a Permit is, but you do not need to use this. A `Token` is the result of a successful authentication. It stores the identity of a user, an expiry date, and a Permit. A token will usually be retrieved by a session key. However, you can also perform a once-off authentication, which also yields you a token, which you will typically throw away when you are finished with it. All public methods of the `Central` object are callable from multiple threads. Reader-Writer locks are used in all of the caching systems. The number of concurrent connections is limited only by the limits of the Go runtime, and the performance limits that are inherent to the simple reader-writer locks used to protect shared state. Authaus must be deployed as a single process (which implies running on a single logical machine). The sole reason why it must run on only one process and not more, is because of the state that lives inside the various Authaus caches. Were it not for these caches, then there would be nothing preventing you from running Authaus on as many machines as necessary. The cached state stored inside the Authaus server is: If you wanted to make Authaus runnable across multiple processes, then you would need to implement a cache invalidation system for these caches. Authaus makes no attempt to mitigate DOS attacks. The most sane approach in this domain seems to be this (http://security.stackexchange.com/questions/12101/prevent-denial-of-service-attacks-against-slow-hashing-functions). The password database (created via NewAuthenticationDB_SQL) stores password hashes using the scrypt key derivation system (http://www.tarsnap.com/scrypt.html). Internally, we store our hash in a format that can later be extended, should we wish to double-hash the passwords, etc. The hash is 65 bytes and looks like this: The first byte of the hash is a version number of the hash. The remaining 64 bytes are the salt and the hash itself. At present, only one version is supported, which is version 1. It consists of 32 bytes of salt, and 32 bytes of scrypt'ed hash, with scrypt parameters N=256 r=8 p=1. Note that the parameter N=256 is quite low, meaning that it is possible to compute this in approximately 1 millisecond (1,000,000 nanoseconds) on a 2009-era Intel Core i7. This is a deliberate tradeoff. On the same CPU, a SHA256 hash takes about 500 nanoseconds to compute, so we are still making it 2000 times harder to brute force the passwords than an equivalent system storing only a SHA256 salted hash. This discussion is only of relevance in the event that the password table is compromised. No cookie signing mechanism is implemented. Cookies are not presently transmitted with Secure:true. This must change. The LDAP Authenticator is extremely simple, and provides only one function: Authenticate a user against an LDAP system (often this means Active Directory, AKA a Windows Domain). It calls the LDAP "Bind" method, and if that succeeds for the given identity/password, then the user is considered authenticated. We take care not to allow an "anonymous bind", which many LDAP servers allow when the password is blank. The Session Database runs on Postgres. It stores a table of sessions, where each row contains the following information: When a permit is altered with Authaus, then all existing sessions have their permits altered transparently. For example, imagine User X is logged in, and his administrator grants him a new permission. User X does not need to log out and log back in again in order for his new permissions to be reflected. His new permissions will be available immediately. Similarly, if a password is changed with Authaus, then all sessions are invalidated. Do take note though, that if a password is changed through an external mechanism (such as with LDAP), then Authaus will have no way of knowing this, and will continue to serve up sessions that were authenticated with the old password. This is a problem that needs addressing. You can limit the number of concurrent sessions per user to 1, by setting MaxActiveSessions.ConfigSessionDB to 1. This setting may only be zero or one. Zero, which is the default, means an unlimited number of concurrent sessions per user. Authaus will always place your Session Database behind its own Session Cache. This session cache is a very simple single-process in-memory cache of recent sessions. The limit on the number of entries in this cache is hard-coded, and that should probably change. The Permit database runs on Postgres. It stores a table of permits, which is simply a 1:1 mapping from Identity -> Permit. The Permit is just an array of bytes, which we store base64 encoded, inside a text field. This part of the system doesn't care how you interpret that blob. The Role Group Database is an entirely optional component of Authaus. The other components of Authaus (Authenticator, PermitDB, SessionDB) do not understand your Permits. To them, a Permit is simply an arbitrary array of bytes. The Role Group Database is a component that adds a specific meaning to a permit blob. Let's see what that specific meaning looks like... The built-in Role Group Database interprets a permit blob as a string of 32-bit integer IDs: These 32-bit integer IDs refer to "role groups" inside a database table. The "role groups" table might look like this: The Role Group IDs use 32-bit indices, because we assume that you are not going to create more than 2^32 different role groups. The worst case we assume here is that of an automated system that creates 100,000 roles per day. Such a system would run for more than 100 years, given a 32-bit ID. These constraints are extraordinary, suggesting that we do not even need 32 bits, but could even get away with just a 16-bit group ID. However, we expect the number of groups to be relatively small. Our aim here, arbitrary though it may be, is to fit the permit and identity into a single ethernet packet, which one can reasonably peg at 1500 bytes. 1500 / 4 = 375. We assume that no sane human administrator will assign 375 security groups to any individual. We expect the number of groups assigned to any individual to be in the range of 1 to 20. This makes 375 a gigantic buffer. OAuth support in Authaus is limited to a very simple scenario: * You wish to allow your users to login using an OAuth service - thereby outsourcing the Authentication to that external service, and using it to populate the email address of your users. OAuth was developed in order to work with Microsoft Azure Active Directory, however it should be fairly easy to extend the code to be able to handle other OAuth providers. Inside the database are two tables related to OAuth: oauthchallenge: The challenge table holds OAuth sessions which have been started, and which are expected to either succeed or fail within the next few minutes. The default timeout for a challenge is 5 minutes. A challenge record is usually created the moment the user clicks on the "Sign in with Microsoft" button on your site, and it tracks that authentication attempt. oauthsession: The session table holds OAuth sessions which have successfully authenticated, and also the token that was retrieved by a successful authorization. If a token has expired, then it is refreshed and updated in-place, inside the oauthsession table. An OAuth login follows this sequence of events: 1. User clicks on a "Signin with X" button on your login page 2. A record is created in the oauthchallenge table, with a unique ID. This ID is a secret known only to the authaus server and the OAuth server. It is used as the `state` parameter in the OAuth login mechanism. 3. The HTTP call which prompts #2 return a redirect URL (eg via an HTTP 302 response), which redirects the user's browser to the OAuth website, so that the user can either grant or refuse access. If the user refuses, or fails to login, then the login sequence ends here. 4. Upon successful authorization with the OAuth system, the OAuth website redirects the user back to your website, to a URL such as example.com/auth/oauth/finish, and you'll typically want Authaus to handle this request directly (via HttpHandlerOAuthFinish). Authaus will extract the secrets from the URL, perform any validations necessary, and then move the record from the oauthchallenge table, into the oauthsession table. While 'moving' the record over, it will also add any additional information that was provided by the successful authentication, such as the token provided by the OAuth provider. 5. Authaus makes an API call to the OAuth system, to retrieve the email address and name of the person that just logged in, using the token just received. 6. If that email address does not exist inside authuserstore, then create a new user record for this identity. 7. Log the user into Authaus, by creating a record inside authsession, for the relevant identity. Inside the authsession table, store a link to the oauthsession record, so that there is a 1:1 link from the authsession table, to the oauthsession table (ie Authaus Session to OAuth Token). 8. Return an Authaus session cookie to the browser, thereby completing the login. Although we only use our OAuth token a single time, during login, to retrieve the user's email address and name, we retain the OAuth token, and so we maintain the ability to make other API calls on behalf of that user. This hasn't proven necessary yet, but it seems like a reasonable bit of future-proofing. See the guidelines at the top of all_test.go for testing instructions.
package dashbutton allows users of dashbutton to detect dashbutton clicks
Package gist is an unofficial toolkit for file uploads to GitHub gist. macOS (via Homebrew): Manual: Download the latest release for your platform (Darwin/macOS, Linux, Windows): https://github.com/TheTannerRyan/gist/releases/latest. Unpack the tar, and copy the binary to a directory that is in the PATH. Here is an example on macOS (Darwin): The /usr/local/bin directory will work with most variants of UNIX. For Windows, you will have to add the parent directory to the system path. To use gist, you need to create a Github personal access token. To create a token, go to https://github.com/settings/tokens. Click the "generate new token" button and enter any description. For the scope, just select "gist". Then click generate token. Once you have a token, you should set the "GIST_KEY" environment variable to the token value. If you do not want to use an environment variable, you will have to copy and paste the token each time you would like to upload content. Global usage: Upload usage (same for secret uploads): All of the commands have short and long versions: The flags also have short aliases: The interface behaves the way it looks: If single or multiple files are being provided, and there are no file name overrides, the original file names will be used. For stdin and the clipboard, if no name is provided, the file will be uploaded as gistfile1.txt. Copyright (c) 2019 Tanner Ryan. All rights reserved. Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. Ato Araki's Go clipboard library is under a BSD 3-clause license. Jeremy Saenz's Go command line library is under a MIT license. Once again, all rights reserved.