Package gi is the top-level repository for the GoGi GUI framework. All of the code is in the sub-packages within this repository: * gist: css-based styling settings, including Color * girl: rendering library, can be used standalone, SVG compliant * gi: the main 2D GUI Node, Widgets, and Window * giv: more complex Views of Go data structures, supporting Model-View paradigm. * svg: full SVG rendering framework, used for Icons in gi. * gi3d: 3D rendering of a Scene within 2D windows -- full interactive 3D scenegraph. * histyle: text syntax-based highlighting styles -- used in giv.TextView * python: access all of GoGi from within Python using GoPy system.
Package harmonica is a set of physics-based animation tools for 2D and 3D applications. There's a spring animation simulator for for smooth, realistic motion and a projectile simulator well suited for projectiles and particles. Example spring usage: Example projectile usage:
Package uv3dp is a set of tools for data exchange between UV Resin based 3D printers
Package emergent is the overall repository for the emergent neural network simulation software, written in Go (golang) with Python wrappers. This top-level of the repository has no functional code -- everything is organized into the following sub-repositories: * emer: defines the primary structural interfaces for emergent, at the level of Network, Layer, and Prjn (projection). These contain no algorithm-specific code and are only about the overall structure of a network, sufficient to support general purpose tools such as the 3D NetView. It also houses widely-used support classes used in algorithm-specific code, including things like MinMax and AvgMax, and also the parameter-styling infrastructure (emer.Params, emer.ParamStyle, emer.ParamSet and emer.ParamSets). * erand has misc random-number generation support functionality, including erand.RndParams for parameterizing the type of random noise to add to a model, and easier support for making permuted random lists, etc. * netview provides the NetView interactive 3D network viewer, implemented in the GoGi 3D framework. * prjn is a separate package for defining patterns of connectivity between layers (i.e., the ProjectionSpecs from C++ emergent). This is done using a fully independent structure that *only* knows about the shapes of the two layers, and it returns a fully general bitmap representation of the pattern of connectivity between them. The leabra.Prjn code then uses these patterns to do all the nitty-gritty of connecting up neurons. This makes the projection code *much* simpler compared to the ProjectionSpec in C++ emergent, which was involved in both creating the pattern and also all the complexity of setting up the actual connections themselves. This should be the *last* time any of those projection patterns need to be written (having re-written this code too many times in the C++ version as the details of memory allocations changed). * patgen supports various pattern-generation algorithms, as implemented in taDataGen in C++ emergent (e.g., PermutedBinary and FlipBits). * timer is a simple interval timing struct, used for benchmarking / profiling etc. * python contains a template Makefile that uses [GoPy](https://github.com/goki/gopy) to generate python bindings to the entire emergent system. See the leabra package version to actually run an example.
Package gi is the top-level repository for the GoGi GUI framework. All of the code is in the sub-packages within this repository: * gist: css-based styling settings, including Color * girl: rendering library, can be used standalone, SVG compliant * gi: the main 2D GUI Node, Widgets, and RenderWin * giv: more complex Views of Go data structures, supporting Model-View paradigm. * svg: full SVG rendering framework, used for Icons in gi. * gi3d: 3D rendering of a Scene within 2D windows -- full interactive 3D scenegraph. * histyle: text syntax-based highlighting styles -- used in textview.View * python: access all of GoGi from within Python using GoPy system.
Package globe builds 3D visualizations on the earth.
Package stl implements functions to read, write, and transform files in the Stereolithography/Surface Tesselation Language (.stl) file format used in 3D modelling. The format specification was taken from http://www.ennex.com/~fabbers/StL.asp, found at http://en.wikipedia.org/wiki/STL_%28file_format%29. While STL stores the data in single precision 32 bit floating point numbers, the stl package does all calculations beyond simple addition in double precision 64 bit (float64). Usage Example Everything that operates on a model is defined as a method of Solid. Note that The STL format has two variants, a human-readable ASCII variant, and a more compact and precise binary variant which is preferrable. The Solid.BinaryHeader field and the Triangle.Attributes fields will be empty, after reading, as these are not part of the ASCII format. The Solid.Name field is read from the first line after "solid ". It is not checked against the name at the end of the file after "endsolid ". The stl package will also not cope with Unicode byte order marks, which some text editors might automatically place at the beginning of a file. The Solid.BinaryHeader field is filled with all 80 bytes of header data. Then, ReadFile will try to fill solid.Name with an ASCII string read from the header data from the first byte until a \0 or a non-ASCII character is detected. As always when you do linear transformations on floating point numbers, you get numerical errors. So you should expect a vertex being rotated for 360° not to end up at exactly the original coordinates, but instead just very close to them. As the error is usually far smaller than the available precision of 3D printing applications, this is not an issue in most cases. You can implement the Writer interface to directly write into your own data structures. This way you can use the CopyFile and CopyAll functions.
Package gwob is a pure Go parser for Wavefront .OBJ 3D geometry file format. Example: See also: https://github.com/udhos/gwob