Package mold provides a web page rendering engine that combines layouts and views for HTML output. The core component of this package is the Engine, which manages the rendering process. Layouts define the top-level structure, such as headers, footers, and navigation. Inside a layout, calling "render" without an argument inserts the view's content into the layout's body. To render a specific section, pass the section's name as an argument. Views are templates that generate the content that is inserted into the body of layouts. Typically what you would put in the "<body>" tag of an HTML page. The path to the view file is passed to the rendering engine to produce HTML output. Sections allow content to be rendered in specific parts of the layout. They are defined within views with a "define" block. The default layout is able to render HTML content within the "<head>" tag by utilising the "head" section. Partials are reusable template snippets that allow you to break down complex views into smaller, manageable components. They are supported in both views and layouts with the "partial" function. Partials are ideal for sharing common logic across multiple views and layouts. An optional second argument allows customizing the data passed to the partial. By default, the view's data context is used.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements. Package readability provides functionality to extract readable content from HTML documents. It implements an algorithm similar to Mozilla's Readability.js to identify and extract the main content from web pages, removing clutter, navigation, ads, and other non-content elements.
Package gopilot provides a simple and minimalistic API for automating Chromium browsers. gopilot is a lightweight alternative to complex browser automation tools, focusing on essential functionality using the Chrome DevTools Protocol (CDP). It's structured around three main components: Browser (manages instances), Page (represents tabs), and Element (represents DOM elements). Key features include navigation, DOM manipulation, element interaction, screenshots, and network request monitoring. The package supports both headful (default) and headless modes, and can be configured via environment variables like GOPILOT_CHROME_EXECUTABLE. Common use cases include web scraping, UI testing, form automation, and taking screenshots. For examples and detailed usage, see: https://github.com/falmar/gopilot/tree/main/examples
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package delve provides a flexible navigation and manipulation API for structured data (maps, slices). It enables type-safe traversal and modification of nested data structures using qualified path references. Key features: - Fluent interface for chaining operations - Support for both maps and slices through generic interfaces - Type-safe value retrieval with automatic wrapping - Nested structure navigation through sub-navigators - Optional panic-style error handling for mandatory operations The package operates through Navigator instances that wrap underlying data sources, providing consistent access patterns regardless of the source data format.
HookServe is a small golang utility for receiving github webhooks. It's easy to use, flexible, and provides strong security though GitHub's HMAC webhook verification scheme. It also comes with a command-line utility that lets you pass webhook push events to other commands. Setting up webhooks on github is easy. Navigate to `github.com/<name>/<repo>/settings/hooks` and create a new webhook.
This executable provides an HTTP server that watches for file system changes to .go files within the working directory (and all nested go packages). Navigating to the configured host and port in a web browser will display the latest results of running `go test` in each go package.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Extends the Go runtime's json.Decoder enabling navigation of a stream of json tokens.
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 11.1.1 The only requirement is the Go Programming Language, at least version 1.8 but 1.11.1 and above is highly recommended. Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advantage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/master/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/shuLhan/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/master/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/master/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: // GetUserBy serves // Method: GET // Resource: http://localhost:8080/user/{username:string} // By is a reserved "keyword" to tell the framework that you're going to // bind path parameters in the function's input arguments, and it also // helps to have "Get" and "GetBy" in the same controller. // // func (c *ExampleController) GetUserBy(username string) mvc.Result { // return mvc.View{ // Name: "user/username.html", // Data: username, // } // } Can use more than one, the factory will make sure that the correct http methods are being registered for each route for this controller, uncomment these if you want: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller. Register custom controller's struct's methods as handlers with custom paths(even with regex parametermized path) via the `BeforeActivation` custom event callback, per-controller. Example: Persistence data inside your Controller struct (share data between requests) by defining services to the Dependencies or have a `Singleton` controller scope. Share the dependencies between controllers or register them on a parent MVC Application, and ability to modify dependencies per-controller on the `BeforeActivation` optional event callback inside a Controller, i.e Access to the `Context` as a controller's field(no manual binding is neede) i.e `Ctx iris.Context` or via a method's input argument, i.e Models inside your Controller struct (set-ed at the Method function and rendered by the View). You can return models from a controller's method or set a field in the request lifecycle and return that field to another method, in the same request lifecycle. Flow as you used to, mvc application has its own `Router` which is a type of `iris/router.Party`, the standard iris api. `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Session dynamic dependency via manager's `Start` to the MVC Application, i.e Inheritance, recursively. Access to the dynamic path parameters via the controller's methods' input arguments, no binding is needed. When you use the Iris' default syntax to parse handlers from a controller, you need to suffix the methods with the `By` word, uppercase is a new sub path. Example: Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. Examples with good patterns to follow but not intend to be used in production of course can be found at: https://github.com/kataras/iris/tree/master/_examples/#mvc. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page: Book (in-progress):
Package iris provides a beautifully expressive and easy to use foundation for your next website, API, or distributed app. Source code and other details for the project are available at GitHub: 8.5.9 Final The only requirement is the Go Programming Language, at least version 1.8 but 1.9 is highly recommended. Iris takes advantage of the vendor directory feature wisely: https://docs.google.com/document/d/1Bz5-UB7g2uPBdOx-rw5t9MxJwkfpx90cqG9AFL0JAYo. You get truly reproducible builds, as this method guards against upstream renames and deletes. A simple copy-paste and `go get ./...` to resolve two dependencies: https://github.com/kataras/golog and the https://github.com/iris-contrib/httpexpect will work for ever even for older versions, the newest version can be retrieved by `go get` but this file contains documentation for an older version of Iris. Follow the instructions below: 1. install the Go Programming Language: https://golang.org/dl 2. clear yours previously `$GOPATH/src/github.com/kataras/iris` folder or create new 3. download the Iris v8.5.9 (final): https://github.com/kataras/iris/archive/v8.zip 4. extract the contents of the `iris-v8` folder that's inside the downloaded zip file to your `$GOPATH/src/github.com/kataras/iris` 5. navigate to your `$GOPATH/src/github.com/kataras/iris` folder if you're not already there and open a terminal/command prompt, execute the command: `go get ./...` and you're ready to GO:) Example code: You can start the server(s) listening to any type of `net.Listener` or even `http.Server` instance. The method for initialization of the server should be passed at the end, via `Run` function. Below you'll see some useful examples: UNIX and BSD hosts can take advandage of the reuse port feature. Example code: That's all with listening, you have the full control when you need it. Let's continue by learning how to catch CONTROL+C/COMMAND+C or unix kill command and shutdown the server gracefully. In order to manually manage what to do when app is interrupted, we have to disable the default behavior with the option `WithoutInterruptHandler` and register a new interrupt handler (globally, across all possible hosts). Example code: Access to all hosts that serve your application can be provided by the `Application#Hosts` field, after the `Run` method. But the most common scenario is that you may need access to the host before the `Run` method, there are two ways of gain access to the host supervisor, read below. First way is to use the `app.NewHost` to create a new host and use one of its `Serve` or `Listen` functions to start the application via the `iris#Raw` Runner. Note that this way needs an extra import of the `net/http` package. Example Code: Second, and probably easier way is to use the `host.Configurator`. Note that this method requires an extra import statement of "github.com/kataras/iris/core/host" when using go < 1.9, if you're targeting on go1.9 then you can use the `iris#Supervisor` and omit the extra host import. All common `Runners` we saw earlier (`iris#Addr, iris#Listener, iris#Server, iris#TLS, iris#AutoTLS`) accept a variadic argument of `host.Configurator`, there are just `func(*host.Supervisor)`. Therefore the `Application` gives you the rights to modify the auto-created host supervisor through these. Example Code: Read more about listening and gracefully shutdown by navigating to: All HTTP methods are supported, developers can also register handlers for same paths for different methods. The first parameter is the HTTP Method, second parameter is the request path of the route, third variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: In order to make things easier for the user, iris provides functions for all HTTP Methods. The first parameter is the request path of the route, second variadic parameter should contains one or more iris.Handler executed by the registered order when a user requests for that specific resouce path from the server. Example code: A set of routes that are being groupped by path prefix can (optionally) share the same middleware handlers and template layout. A group can have a nested group too. `.Party` is being used to group routes, developers can declare an unlimited number of (nested) groups. Example code: iris developers are able to register their own handlers for http statuses like 404 not found, 500 internal server error and so on. Example code: With the help of iris's expressionist router you can build any form of API you desire, with safety. Example code: Iris has first-class support for the MVC pattern, you'll not find these stuff anywhere else in the Go world. Example Code: Iris web framework supports Request data, Models, Persistence Data and Binding with the fastest possible execution. Characteristics: All HTTP Methods are supported, for example if want to serve `GET` then the controller should have a function named `Get()`, you can define more than one method function to serve in the same Controller struct. Persistence data inside your Controller struct (share data between requests) via `iris:"persistence"` tag right to the field or Bind using `app.Controller("/" , new(myController), theBindValue)`. Models inside your Controller struct (set-ed at the Method function and rendered by the View) via `iris:"model"` tag right to the field, i.e User UserModel `iris:"model" name:"user"` view will recognise it as `{{.user}}`. If `name` tag is missing then it takes the field's name, in this case the `"User"`. Access to the request path and its parameters via the `Path and Params` fields. Access to the template file that should be rendered via the `Tmpl` field. Access to the template data that should be rendered inside the template file via `Data` field. Access to the template layout via the `Layout` field. Access to the low-level `iris.Context` via the `Ctx` field. Get the relative request path by using the controller's name via `RelPath()`. Get the relative template path directory by using the controller's name via `RelTmpl()`. Flow as you used to, `Controllers` can be registered to any `Party`, including Subdomains, the Party's begin and done handlers work as expected. Optional `BeginRequest(ctx)` function to perform any initialization before the method execution, useful to call middlewares or when many methods use the same collection of data. Optional `EndRequest(ctx)` function to perform any finalization after any method executed. Inheritance, recursively, see for example our `mvc.SessionController/iris.SessionController`, it has the `mvc.Controller/iris.Controller` as an embedded field and it adds its logic to its `BeginRequest`. Source file: https://github.com/kataras/iris/blob/v8/mvc/session_controller.go. Read access to the current route via the `Route` field. Support for more than one input arguments (map to dynamic request path parameters). Register one or more relative paths and able to get path parameters, i.e Response via output arguments, optionally, i.e Where `any` means everything, from custom structs to standard language's types-. `Result` is an interface which contains only that function: Dispatch(ctx iris.Context) and Get where HTTP Method function(Post, Put, Delete...). Iris has a very powerful and blazing fast MVC support, you can return any value of any type from a method function and it will be sent to the client as expected. * if `string` then it's the body. * if `string` is the second output argument then it's the content type. * if `int` then it's the status code. * if `bool` is false then it throws 404 not found http error by skipping everything else. * if `error` and not nil then (any type) response will be omitted and error's text with a 400 bad request will be rendered instead. * if `(int, error)` and error is not nil then the response result will be the error's text with the status code as `int`. * if `custom struct` or `interface{}` or `slice` or `map` then it will be rendered as json, unless a `string` content type is following. * if `mvc.Result` then it executes its `Dispatch` function, so good design patters can be used to split the model's logic where needed. The example below is not intended to be used in production but it's a good showcase of some of the return types we saw before; Another good example with a typical folder structure, that many developers are used to work, can be found at: https://github.com/kataras/iris/tree/v8/_examples/mvc/overview. By creating components that are independent of one another, developers are able to reuse components quickly and easily in other applications. The same (or similar) view for one application can be refactored for another application with different data because the view is simply handling how the data is being displayed to the user. If you're new to back-end web development read about the MVC architectural pattern first, a good start is that wikipedia article: https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. Follow the examples at: https://github.com/kataras/iris/tree/v8/_examples/#mvc At the previous example, we've seen static routes, group of routes, subdomains, wildcard subdomains, a small example of parameterized path with a single known parameter and custom http errors, now it's time to see wildcard parameters and macros. iris, like net/http std package registers route's handlers by a Handler, the iris' type of handler is just a func(ctx iris.Context) where context comes from github.com/kataras/iris/context. Iris has the easiest and the most powerful routing process you have ever meet. At the same time, iris has its own interpeter(yes like a programming language) for route's path syntax and their dynamic path parameters parsing and evaluation, We call them "macros" for shortcut. How? It calculates its needs and if not any special regexp needed then it just registers the route with the low-level path syntax, otherwise it pre-compiles the regexp and adds the necessary middleware(s). Standard macro types for parameters: if type is missing then parameter's type is defaulted to string, so {param} == {param:string}. If a function not found on that type then the "string"'s types functions are being used. i.e: Besides the fact that iris provides the basic types and some default "macro funcs" you are able to register your own too!. Register a named path parameter function: at the func(argument ...) you can have any standard type, it will be validated before the server starts so don't care about performance here, the only thing it runs at serve time is the returning func(paramValue string) bool. Example Code: A path parameter name should contain only alphabetical letters, symbols, containing '_' and numbers are NOT allowed. If route failed to be registered, the app will panic without any warnings if you didn't catch the second return value(error) on .Handle/.Get.... Last, do not confuse ctx.Values() with ctx.Params(). Path parameter's values goes to ctx.Params() and context's local storage that can be used to communicate between handlers and middleware(s) goes to ctx.Values(), path parameters and the rest of any custom values are separated for your own good. Run Static Files Example code: More examples can be found here: https://github.com/kataras/iris/tree/v8/_examples/beginner/file-server Middleware is just a concept of ordered chain of handlers. Middleware can be registered globally, per-party, per-subdomain and per-route. Example code: iris is able to wrap and convert any external, third-party Handler you used to use to your web application. Let's convert the https://github.com/rs/cors net/http external middleware which returns a `next form` handler. Example code: Iris supports 5 template engines out-of-the-box, developers can still use any external golang template engine, as `context/context#ResponseWriter()` is an `io.Writer`. All of these five template engines have common features with common API, like Layout, Template Funcs, Party-specific layout, partial rendering and more. Example code: View engine supports bundled(https://github.com/jteeuwen/go-bindata) template files too. go-bindata gives you two functions, asset and assetNames, these can be setted to each of the template engines using the `.Binary` func. Example code: A real example can be found here: https://github.com/kataras/iris/tree/v8/_examples/view/embedding-templates-into-app. Enable auto-reloading of templates on each request. Useful while developers are in dev mode as they no neeed to restart their app on every template edit. Example code: Note: In case you're wondering, the code behind the view engines derives from the "github.com/kataras/iris/view" package, access to the engines' variables can be granded by "github.com/kataras/iris" package too. Each one of these template engines has different options located here: https://github.com/kataras/iris/tree/v8/view . This example will show how to store and access data from a session. You don’t need any third-party library, but If you want you can use any session manager compatible or not. In this example we will only allow authenticated users to view our secret message on the /secret page. To get access to it, the will first have to visit /login to get a valid session cookie, which logs him in. Additionally he can visit /logout to revoke his access to our secret message. Example code: Running the example: Sessions persistence can be achieved using one (or more) `sessiondb`. Example Code: More examples: In this example we will create a small chat between web sockets via browser. Example Server Code: Example Client(javascript) Code: Running the example: But you should have a basic idea of the framework by now, we just scratched the surface. If you enjoy what you just saw and want to learn more, please follow the below links: Examples: Middleware: Home Page:
Package geomaps provides the API client, operations, and parameter types for Amazon Location Service Maps V2. Capabilities include: Access to comprehensive base map data, allowing you to tailor the map display to your specific needs. Multiple pre-designed map styles suited for various application types, such as navigation, logistics, or data visualization. Generation of static map images for scenarios where interactive maps aren't suitable, such as: Embedding in emails or documents Displaying in low-bandwidth environments Creating printable maps Enhancing application performance by reducing client-side rendering
Package radir implements a large subset of "The OID Directory" -- an EXPERIMENTAL Internet-Draft (I-D) series by Jesse Coretta. The Internet-Drafts (henceforth referred to as "the I-D series") is made up of the following individual drafts: These drafts can be viewed on the IETF Data Tracker site, or via the official OID Directory site and GitHub repositories. At present, the current revisions are set to expire on February 23, 2025. The I-D series, and by necessity this package, is thoroughly EXPERIMENTAL. It is not yet approved by the IETF, and thus should NEVER be used in any capacity beyond proof-of-concept or work-in-progress efforts. This package is an abstract, general-use framework supplement. It will aid in the marshaling and unmarshaling of OID registration and registrant (contact) constructs, whether using a proper go-ldap/v3 Entry instance, or through manual assembly. The package can aid in the bidirectional conversion of certain values, such as "dotNotation" and "dn" values, and offers many other useful features in service to the I-D series mentioned above. Implementations which use this package may be of a server-side or client-side nature, or neither. There is no singular use-case for this package. TLDR; its a nifty toolbox; what you build is what the package serves. As the terms are defined throughout the OID Directory I-D series, this package is absolutely not a complete DUA, DIT or DSA. While it can serve as a valuable component in such constructs, its current state does not allow drop-in functionality of that nature, nor was this intended. For instance, those designing a compliant RA DUA, per the RADUA I-D, are expected to install and utilize the go-ldap/v3 package on their own terms and in service to their particular environment or infrastructure. This is done to maximize compatibility across the many potential use-cases and directory products, as well as to limit potential security vulnerabilities relating to this package itself. This approach also has the secondary effect of making potential integration efforts much simpler and far less disruptive. TLDR; this package works with go-ldap/v3, but it does NOT import it directly. Do it yourself. Thanks to the GetOrSetFunc closure type, this package is supremely extensible. Virtually all Registration and Registrant methods -- such as Registration.SetDN or FirstAuthority.POBoxGetFunc -- allow for closure-based behavioral overrides. This allows limitless control over how values manifest during presentation, as well as how they are written to instances of the aforementioned types. For additional information, see the GetOrSetFunc type documentation, as well as the package examples for all methods which allow input of instances of this type. See also the next section regarding storage space considerations with regards to especially -- and unnecessarily -- large values. TLDR; Control value I/O using a closure signature of "func(...any) (any, error)" (GetOrSetFunc) for any "Set<X>" or "<X>GetFunc" methods. Per Section 2.2.3.4 of the RADUA I-D, this package provides a thread-safe, memory-based Cache facility for use by a client. The primary purpose of this facility is to cache, or store temporarily, all *Registration and *Registrant instances that have either been crafted manually, or marshaled by way of a go-ldap/v3 entry instance. While crude, it can help provide considerable I/O savings in terms of LDAP search requests, which may or may not be transmitted over-the-wire. Lifespans of cached entries is directed by manual specification (e.g.: by the end user), or by way of a literal or collectively-inherited TTL obtained within the RA DIT or via the appropriate *DITProfile instance as a global fallback. See the aforementioned RA DUA section for details regarding TTL precedence and other mechanics. Use of this facility is not required to comply with the aforementioned specification. Adopters may freely supplant the package-provided Cache with a caching system of their own choosing or design. TLDR; Caching eligible instances reduces network (LDAP) I/O at the expense of memory. You can use the Cache type, or a third-party one, or abstain from caching entirely. The I-D series offers two (2) directory models in terms of Registration structure and layout, each of which are implemented in this package. The two dimensional model is discussed in Section 3.1.2 of the RADIT I-D. The three dimensional model is discussed in Section 3.1.3 of the RADIT I-D. In most scenarios, use of the three dimensional model is the preferred strategy. TLDR; Use the ThreeDimensional directory model. The I-D series offers two (2) registrant entry policies, each of which are implemented in this package. Dedicated registrants are covered in Section 3.2.1.1.1 of the RADIT I-D. Combined registrants are briefly covered in Section 3.2.1.1.2 of the RADIT I-D. In most scenarios, use of dedicated registrants is the preferred strategy. TLDR; Use *Registrant instances instead of "combining" registrant content with *Registration instances (in-line). As stated in Section 3.2.1.1.1 of the RADIT I-D, it is possible to forego use of the draft-based authority types, such as "sponsorCommonName", in favor of the traditional "cn" type. This logic applies may extend to either "Combined" or "Dedicated" Registrant Policies. See the DITProfile.UseAltAuthorityTypes method for a means of enabling this behavior. Note there are caveats with either standpoint, and thus the reader is advised to review the aforementioned section of the draft to ensure they understand the ramifications of their decision. Please also note it is inadvisable to change this value without a good reason, and inappropriate alteration will result in degraded client behavior and likely a deviation from the established content policies enforced within the directory. You have been warned. See the FirstAuthorityAltAttributeTypes, CurrentAuthorityAltAttributeTypes and SponsorAltAttributeTypes map variables for a complete list of the types that are -- and are not -- subject to the influence of the aforementioned method. TLDR; You may use, for example, "cn" instead of "sponsorCommonName" ... but there are caveats. This package makes conversion (in either direction) between go-ldap/v3 Entry and *Registration or *Registrant instances a breeze! When unmarshaling FROM an instance of go-ldap/v3 Entry TO an instance of *Registration, rather than using the go-ldap/v3 Entry.Unmarshal method directly, simply feed the method to *Registration.Marshal to achieve the same effect: This is necessary because the go-ldap/v3 Entry.Unmarshal method only supports a limited number of struct field value types. To get around this issue, radir simply performs independent marshaling upon any individual struct components within the destination instance (*Registration). In other words, if there are four fields that contain struct values, each of these fields is marshaled independently. This ensures that all of the needed attribute values are collected from the source go-ldap/v3 Entry instance. When unmarshaling FROM an instance of *Registration (or *Registrant) TO an instance of go-ldap/v3 Entry, simply use the Registration.Unmarshal (or Registrant.Unmarshal) method. Feed the output to the go-ldap/v3 NewEntry function: TLDR; Excellent marshal and unmarshal features. And while go-ldap/v3 Entry.Unmarshal is very limited, we have a most suitable workaround: don't "use" it, let us handle it for you. OIDs are virtually infinite in size. Large pools of sibling registrations can be exceedingly difficult to navigate manually; the sequence of number forms may not be contiguous, and there is no guarantee the entries which bear these values will be ordered correctly in directory search results. To that end, the "spatialContext" AUXILIARY class defined within the I-D series is implemented within this package as the *Spatial struct type. Use of this type can help mitigate some of this tedium by allowing any given registration entry to bear direct DN-based references to other spatially-relevant registrations. Specifically, this produces an abstraction of directional movement in the following contexts: Non-collective *Spatial attribute types may be set manually, or they may be present within entries marshaled into Registration instances as literal or collective values. Collective values are not meant for manual assignment, thus no related "set" methods exist in that regard. Like virtually all other methods in this package, the relevant *Spatial methods allow for GetOrSetFunc closure use, thereby letting the user enhance the behavior of instances of this type in a variety of ways: TLDR; RA DIT navigation with a "🕹️" duct-taped on to it.
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package log15 provides an opinionated, simple toolkit for best-practice logging that is both human and machine readable. It is modeled after the standard library's io and net/http packages. This package enforces you to only log key/value pairs. Keys must be strings. Values may be any type that you like. The default output format is logfmt, but you may also choose to use JSON instead if that suits you. Here's how you log: This will output a line that looks like: To get started, you'll want to import the library: Now you're ready to start logging: Because recording a human-meaningful message is common and good practice, the first argument to every logging method is the value to the *implicit* key 'msg'. Additionally, the level you choose for a message will be automatically added with the key 'lvl', and so will the current timestamp with key 't'. You may supply any additional context as a set of key/value pairs to the logging function. log15 allows you to favor terseness, ordering, and speed over safety. This is a reasonable tradeoff for logging functions. You don't need to explicitly state keys/values, log15 understands that they alternate in the variadic argument list: If you really do favor your type-safety, you may choose to pass a log.Ctx instead: Frequently, you want to add context to a logger so that you can track actions associated with it. An http request is a good example. You can easily create new loggers that have context that is automatically included with each log line: This will output a log line that includes the path context that is attached to the logger: The Handler interface defines where log lines are printed to and how they are formated. Handler is a single interface that is inspired by net/http's handler interface: Handlers can filter records, format them, or dispatch to multiple other Handlers. This package implements a number of Handlers for common logging patterns that are easily composed to create flexible, custom logging structures. Here's an example handler that prints logfmt output to Stdout: Here's an example handler that defers to two other handlers. One handler only prints records from the rpc package in logfmt to standard out. The other prints records at Error level or above in JSON formatted output to the file /var/log/service.json This package implements three Handlers that add debugging information to the context, CallerFileHandler, CallerFuncHandler and CallerStackHandler. Here's an example that adds the source file and line number of each logging call to the context. This will output a line that looks like: Here's an example that logs the call stack rather than just the call site. This will output a line that looks like: The "%+v" format instructs the handler to include the path of the source file relative to the compile time GOPATH. The github.com/go-stack/stack package documents the full list of formatting verbs and modifiers available. The Handler interface is so simple that it's also trivial to write your own. Let's create an example handler which tries to write to one handler, but if that fails it falls back to writing to another handler and includes the error that it encountered when trying to write to the primary. This might be useful when trying to log over a network socket, but if that fails you want to log those records to a file on disk. This pattern is so useful that a generic version that handles an arbitrary number of Handlers is included as part of this library called FailoverHandler. Sometimes, you want to log values that are extremely expensive to compute, but you don't want to pay the price of computing them if you haven't turned up your logging level to a high level of detail. This package provides a simple type to annotate a logging operation that you want to be evaluated lazily, just when it is about to be logged, so that it would not be evaluated if an upstream Handler filters it out. Just wrap any function which takes no arguments with the log.Lazy type. For example: If this message is not logged for any reason (like logging at the Error level), then factorRSAKey is never evaluated. The same log.Lazy mechanism can be used to attach context to a logger which you want to be evaluated when the message is logged, but not when the logger is created. For example, let's imagine a game where you have Player objects: You always want to log a player's name and whether they're alive or dead, so when you create the player object, you might do: Only now, even after a player has died, the logger will still report they are alive because the logging context is evaluated when the logger was created. By using the Lazy wrapper, we can defer the evaluation of whether the player is alive or not to each log message, so that the log records will reflect the player's current state no matter when the log message is written: If log15 detects that stdout is a terminal, it will configure the default handler for it (which is log.StdoutHandler) to use TerminalFormat. This format logs records nicely for your terminal, including color-coded output based on log level. Becasuse log15 allows you to step around the type system, there are a few ways you can specify invalid arguments to the logging functions. You could, for example, wrap something that is not a zero-argument function with log.Lazy or pass a context key that is not a string. Since logging libraries are typically the mechanism by which errors are reported, it would be onerous for the logging functions to return errors. Instead, log15 handles errors by making these guarantees to you: - Any log record containing an error will still be printed with the error explained to you as part of the log record. - Any log record containing an error will include the context key LOG15_ERROR, enabling you to easily (and if you like, automatically) detect if any of your logging calls are passing bad values. Understanding this, you might wonder why the Handler interface can return an error value in its Log method. Handlers are encouraged to return errors only if they fail to write their log records out to an external source like if the syslog daemon is not responding. This allows the construction of useful handlers which cope with those failures like the FailoverHandler. log15 is intended to be useful for library authors as a way to provide configurable logging to users of their library. Best practice for use in a library is to always disable all output for your logger by default and to provide a public Logger instance that consumers of your library can configure. Like so: Users of your library may then enable it if they like: The ability to attach context to a logger is a powerful one. Where should you do it and why? I favor embedding a Logger directly into any persistent object in my application and adding unique, tracing context keys to it. For instance, imagine I am writing a web browser: When a new tab is created, I assign a logger to it with the url of the tab as context so it can easily be traced through the logs. Now, whenever we perform any operation with the tab, we'll log with its embedded logger and it will include the tab title automatically: There's only one problem. What if the tab url changes? We could use log.Lazy to make sure the current url is always written, but that would mean that we couldn't trace a tab's full lifetime through our logs after the user navigate to a new URL. Instead, think about what values to attach to your loggers the same way you think about what to use as a key in a SQL database schema. If it's possible to use a natural key that is unique for the lifetime of the object, do so. But otherwise, log15's ext package has a handy RandId function to let you generate what you might call "surrogate keys" They're just random hex identifiers to use for tracing. Back to our Tab example, we would prefer to set up our Logger like so: Now we'll have a unique traceable identifier even across loading new urls, but we'll still be able to see the tab's current url in the log messages. For all Handler functions which can return an error, there is a version of that function which will return no error but panics on failure. They are all available on the Must object. For example: All of the following excellent projects inspired the design of this library: code.google.com/p/log4go github.com/op/go-logging github.com/technoweenie/grohl github.com/Sirupsen/logrus github.com/kr/logfmt github.com/spacemonkeygo/spacelog golang's stdlib, notably io and net/http https://xkcd.com/927/
Package saml contains a partial implementation of the SAML standard in golang. SAML is a standard for identity federation, i.e. either allowing a third party to authenticate your users or allowing third parties to rely on us to authenticate their users. In SAML parlance an Identity Provider (IDP) is a service that knows how to authenticate users. A Service Provider (SP) is a service that delegates authentication to an IDP. If you are building a service where users log in with someone else's credentials, then you are a Service Provider. This package supports implementing both service providers and identity providers. The core package contains the implementation of SAML. The package samlsp provides helper middleware suitable for use in Service Provider applications. The package samlidp provides a rudimentary IDP service that is useful for testing or as a starting point for other integrations. Version 0.4.0 introduces a few breaking changes to the _samlsp_ package in order to make the package more extensible, and to clean up the interfaces a bit. The default behavior remains the same, but you can now provide interface implementations of _RequestTracker_ (which tracks pending requests), _Session_ (which handles maintaining a session) and _OnError_ which handles reporting errors. Public fields of _samlsp.Middleware_ have changed, so some usages may require adjustment. See [issue 231](https://github.com/crewjam/saml/issues/231) for details. The option to provide an IDP metadata URL has been deprecated. Instead, we recommend that you use the `FetchMetadata()` function, or fetch the metadata yourself and use the new `ParseMetadata()` function, and pass the metadata in _samlsp.Options.IDPMetadata_. Similarly, the _HTTPClient_ field is now deprecated because it was only used for fetching metdata, which is no longer directly implemented. The fields that manage how cookies are set are deprecated as well. To customize how cookies are managed, provide custom implementation of _RequestTracker_ and/or _Session_, perhaps by extending the default implementations. The deprecated fields have not been removed from the Options structure, but will be in future. In particular we have deprecated the following fields in _samlsp.Options_: - `Logger` - This was used to emit errors while validating, which is an anti-pattern. - `IDPMetadataURL` - Instead use `FetchMetadata()` - `HTTPClient` - Instead pass httpClient to FetchMetadata - `CookieMaxAge` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieName` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider - `CookieDomain` - Instead assign a custom CookieRequestTracker or CookieSessionProvider Let us assume we have a simple web application to protect. We'll modify this application so it uses SAML to authenticate users. ```golang package main import ( ) ``` Each service provider must have an self-signed X.509 key pair established. You can generate your own with something like this: We will use `samlsp.Middleware` to wrap the endpoint we want to protect. Middleware provides both an `http.Handler` to serve the SAML specific URLs and a set of wrappers to require the user to be logged in. We also provide the URL where the service provider can fetch the metadata from the IDP at startup. In our case, we'll use [samltest.id](https://samltest.id/), an identity provider designed for testing. ```golang package main import ( ) ``` Next we'll have to register our service provider with the identity provider to establish trust from the service provider to the IDP. For [samltest.id](https://samltest.id/), you can do something like: Navigate to https://samltest.id/upload.php and upload the file you fetched. Now you should be able to authenticate. The flow should look like this: 1. You browse to `localhost:8000/hello` 1. The middleware redirects you to `https://samltest.id/idp/profile/SAML2/Redirect/SSO` 1. samltest.id prompts you for a username and password. 1. samltest.id returns you an HTML document which contains an HTML form setup to POST to `localhost:8000/saml/acs`. The form is automatically submitted if you have javascript enabled. 1. The local service validates the response, issues a session cookie, and redirects you to the original URL, `localhost:8000/hello`. 1. This time when `localhost:8000/hello` is requested there is a valid session and so the main content is served. Please see `example/idp/` for a substantially complete example of how to use the library and helpers to be an identity provider. The SAML standard is huge and complex with many dark corners and strange, unused features. This package implements the most commonly used subset of these features required to provide a single sign on experience. The package supports at least the subset of SAML known as [interoperable SAML](http://saml2int.org). This package supports the Web SSO profile. Message flows from the service provider to the IDP are supported using the HTTP Redirect binding and the HTTP POST binding. Message flows from the IDP to the service provider are supported via the HTTP POST binding. The package can produce signed SAML assertions, and can validate both signed and encrypted SAML assertions. It does not support signed or encrypted requests. The _RelayState_ parameter allows you to pass user state information across the authentication flow. The most common use for this is to allow a user to request a deep link into your site, be redirected through the SAML login flow, and upon successful completion, be directed to the originally requested link, rather than the root. Unfortunately, _RelayState_ is less useful than it could be. Firstly, it is not authenticated, so anything you supply must be signed to avoid XSS or CSRF. Secondly, it is limited to 80 bytes in length, which precludes signing. (See section 3.6.3.1 of SAMLProfiles.) The SAML specification is a collection of PDFs (sadly): - [SAMLCore](http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf) defines data types. - [SAMLBindings](http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf) defines the details of the HTTP requests in play. - [SAMLProfiles](http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf) describes data flows. - [SAMLConformance](http://docs.oasis-open.org/security/saml/v2.0/saml-conformance-2.0-os.pdf) includes a support matrix for various parts of the protocol. [SAMLtest](https://samltest.id/) is a testing ground for SAML service and identity providers. Please do not report security issues in the issue tracker. Rather, please contact me directly at ross@kndr.org ([PGP Key `78B6038B3B9DFB88`](https://keybase.io/crewjam)).