Package monday is a minimalistic translator for month and day of week names in time.Date objects Monday is not an alternative to standard time package. It is a temporary solution to use while the internationalization features are not ready. That's why monday doesn't create any additional parsing algorithms, layout identifiers. It is just a wrapper for time.Format and time.ParseInLocation and uses all the same layout IDs, constants, etc. Format usage: Parse usage: Monday initializes all its data once in the init func and then uses only func calls and local vars. Thus, it's thread-safe and doesn't need any mutexes to be used with.
Package xcore is a set of basic objects for programation (XCache for caches, XDataset for data sets, XLanguage for languages and XTemplate for templates). For GO, the actual existing code includes: - XCache: Application Memory Caches for any purpose, with time control and quantity control of object in the cache and also check changes against original source. It is a thread safe cache. - XDataset: Basic nested data structures for any purpose (template injection, configuration files, database records, etc). - XLanguage: language dependent text tables for internationalization of code. The sources can be text or XML file definitions. - XTemplate: template system with meta language to create complex documents (compatible with any text language, HTML, CSS, JS, PDF, XML, etc), heavily used on CMS systems and others. It is already used on sites that serve more than 60 million pages a month (500 pages per second on pike hour) and can be used on multithreading environment safely. XCache is a library to cache all the data you want into current application memory for a very fast access to the data. The access to the data support multithreading and concurrency. For the same reason, this type of cache is not persistent (if you exit the application) and cannot grow too much (as memory is the limit). However, you can control a timeout of each cache piece, and eventually a comparison function against a source (file, database, etc) to invalid the cache. 1. Declare a new XCache with NewXCache() function: 2. Fill in the cache: Once you have declared the cache, you can fill it with anything you want. The main cache object is an interface{} so you can put here anything you need, from simple variables to complex structures. You need to use the Set function: Note the ID is always a string, so convert a database key to string if needed. 3. To use the cache, just ask for your entry with Get function: 4. To maintain the cache: You may need Del function, to delete a specific entry (maybe because you deleted the record in database). You may also need Clean function to deletes a percentage of the cache, or Flush to deletes it all. The Verify function is used to check cache entries against their sources through the Validator function. Be very careful, if the cache is big or the Validator function is complex (maybe ask for a remote server information), the verification may be VERY slow and huge CPU use. The Count function gives some stats about the cache. 5. How to use Verify Function: This function is recommended when the source is local and fast to check (for instance a language file or a template file). When the source is distant (other cluster database, any rpc source on another network, integration of many parts, etc), it is more recommended to create a function that will delete the cache when needed (on demand cache change). The validator function is a func(id, time.Time) bool function. The first parameter is the ID entry in the cache, the second parameter the time of the entry was created. The validator function returns true is the cache is still valid, or false if it needs to be invalidated. The XCache is thread safe. The cache can be limited in quantity of entries and timeout for data. The cache is automanaged (for invalid expired data) and can be cleaned partially or totally manually. The XLanguage table of text entries can be loaded from XML file, XML string or normal text file or string. It is used to keep a table of id=value set of entries in any languages you need, so it is easy to switch between XLanguage instance based on the required language needed. Obviously, any XLanguage you load in any language should have the same id entries translated, for the same use. The XLanguage object is thread safe 1. loading: You can load any file or XML string directly into the object. 1.1 The XML Format is: NAMEOFTABLE is the name of your table entry, for example "loginform", "user_report", etc. LG is the ISO-3369 2 letters language ID, for example "es" for spanish, "en" for english, "fr" for french, etc. ENTRYNAME is the ID of the entry, for example "greating", "yourname", "submitbutton". ENTRYVALUE is the text for your entry, for example "Hello", "You are:", "Save" if your table is in english. STATUSVALUE is the status of the entry- You may put any value to control your translation over time and processes. 1.2 The flat text format is: ENTRYNAME is the ID of the entry, for example "greating", "yourname", "submitbutton". ENTRYVALUE is the text for your entry, for example "Hello", "You are:", "Save" if your table is in english. There is no name of table or language in this format (you "know" what you are loading). The advantage to use XML format is to have more control over your language, and eventyally add attributes into your entries, for instance you may add attributes translated="yes/no", verified="yes/no", and any other data that your system could insert. The XLanguage will ignore those attributes loading the table. 2. creation: To create a new XLanguage empty structure: There are 4 functions to create the language from a file or string, flat text or XML text: Then you can use the set of basic access functions: SetName/SetLanguage functions are used to set the table name and language of the object (generally to build an object from scratch). GetName/GetLanguage functions are used to get the table name and language of the object (generally when you load it from some source). Set/Get/Del functions are used to add or modify a new entry, read an entry, or deletes an entry in the object. SetStatus/GetStatus functions are used to add or get a status for the entry in the object. To create am XML file from the objet, you can use the GetXML() function 1. Overview: The XDataSet is a set of interfaces and basic classes ready-to-use to build a standard set of data optionally nested and hierarchical, that can be used for any purpose: - Keep complex data in memory. - Create JSON structures. - Inject data into templates. - Interchange database data (records set and record). You can store into it generic supported data, as well as any complex interface structures: - Int - Float - String - Time - Bool - []Int - []Float - []Time - []Bool - XDataSetDef (anything extended with this interface) - []String - Anything else ( interface{} ) - XDataSetCollectionDef (anything extended with this interface) The generic supported data comes with a set of functions to get/set those data directly into the XDataset. Example: Note that all references to XDataset and XDatasetCollection are pointers, always (to be able to modify the values of them). 2. XDatasetDef interface: It is the interface to describe a simple set of data mapped as "name": value, where value can be of any type. The interface implements a good amount of basic methods to get the value on various format such as GetString("name"), GetInt("name"), etc (see below). If the value is another type as asked, the method should contert it if possible. For instance "key":123 required through GetString("key") should return "123". The XDataset type is a simple map[string]interface{} with all the implemented methods and should be enough to use for almost all required cases. However, you can build any complex structure that extends the interface and implements all the required functions to stay compatible with the XDatasetDef. 3. XDatasetCollectionDef Interface: This is the interface used to extend any type of data as a Collection, i-e an array of XDatasetDef. This is a slice of any XDatasetDef compatible data. The interface implements some methods to work on array structure such as Push, Pop, Shift, Unshift and some methods to search data into the array. The XDatasetCollection type is a simple []DatasetDef with all the implemented methods and should be enough to use for almost all required cases. 1. Overview: The XDataSetTS is a DatasetDef structure, thread safe. It is build on the XDataset with the same properties, but is thread safe to protect Read/Write accesses from different thread. Example: You may also build a XDatasetTS to encapsulate a XDatasetDef that is not thread safe, to use it safely Note that all references to XDatasetTS are pointers, always (to be able to modify the values of them). The DatasetTS meet the XDatasetDef interface 1. Overview: This is a class to compile and keep a Template that can be injected with an XDataSet structure of data, with a metalanguage to inject the data. The metalanguage is extremely simple and is made to be useful and **really** separate programation from template code (not like other many generic template systems that just mix code and data). A template is a set of HTML/XML (or any other language) string with a meta language to inject variables and build a final string. The XCore XTemplate system is based on the injection of parameters, language translation strings and data fields directly into the HTML (Or any other language you need) template. The HTML itself (or any other language) is a text code not directly used by the template system, but used to dress the data you want to represent in your preferred language. The variables to inject must be into a XDataSet structure or into a structure extended from XDataSetDef interface. The injection of data is based on a XDataSet structure of values that can be nested into another XDataSet and XDataSetConnection and so on. The template compiler recognize nested arrays to automatically make loops on the information. Templates are made to store reusable HTML code, and overall easily changeable by people that do not know how to write programs. A template can be as simple as a single character (no variables to inject) to a very complex nested, conditional and loops sub-templates. Yes. this is a template, but a very simple one without need to inject any data. Let's go more complex: Having an array of data, we want to paint it beautifull: We can create a template to inject this data into it: 2. Create and use XTemplateData: In sight to create and use templates, you have all those possible options to use: Creates the XTemplate from a string or a file or any other source: Clone the XTemplate: 3. Metalanguage Reference: 3.1 Comments: %-- and --% You may use comments into your template. The comments will be discarded immediately at the compilation of the template and do not interfere with the rest of your code. Example: 3.2 Nested Templates: [[...]] and [[]] You can define new nested templates into your main template A nested template is defined by: The templteid is any combination of lowers letters only (a-z), numbers (0-9), and 3 special chars: . (point) - (dash) and _ (underline). The template is closed with [[]]. There is no limits into nesting templates. Any nested template will inheritate all the father elements and can use father elements too. To call a sub-template, you need to use &&templateid&& syntax (described below in this document). Example: You may use more than one id into the same template to avoid repetition of the same code. The different id's are separated with a pipe | Important note: A template will be visible only on the same level of its declaration. For example, if you put a subtemplate "b" into a subtemplate "a", it will not be visible by &&b&& from the top level, but only into the subtemplate "a". 3.3 Simple Elements: ##...## and {{...}} There are 2 types of simple elements. Language elements and Data injector elements (also called field elements). We "logically" define the 2 type of elements. The separation is only for human logic and template filling, however the language information can perfectly fit into the data to inject (and not use ## entries). 3.3.1 Languages elements: ##entry## All the languages elements should have the format: ##entry##. A language entry is generally anything written into your code or page that does not come from a database, and should adapt to the language of the client visiting your site. Using the languages elements may depend on the internationalization of your page. If your page is going to be in a single language forever, you really dont need to use languages entries. The language elements generally carry titles, menu options, tables headers etc. The language entries are set into the "#" entry of the main template XDataset to inject, and is a XLanguage table. Example: With data to inject: 3.3.2 Field elements: {{fieldname}} Fields values should have the format: {{fieldname}}. Your fields source can be a database or any other preferred repository data source. Example: You can access an element with its path into the data set to inject separating each field level with a > (greater than). This will take the name of the second hobby in the dataset defined upper. (collections are 0 indexed). The 1 denotes the second record of the hobbies XDatasetCollection. If the field is not found, it will be replaced with an empty string. Tecnically your field names can be any string in the dataset. However do not use { } or > into the names of your fields or the XTemplate may not use them correctly. We recommend to use lowercase names with numbers and ._- Accents and UTF8 symbols are also welcome. 3.3.3 Scope: When you use an id to point a value, the template will first search into the available ids of the local level. If no id is found, the it will search into the upper levers if any, and so on. Example: At the level of 'data2', using {{appname}} will get back 'DomCore'. At the level of 'key1', using {{appname}} will get back 'Nested App'. At the level of 'key2', using {{appname}} will get back 'DomCore'. At the level of root, 'data1' or 'detail', using {{appname}} will get back an empty string. 3.3.4 Path access: id>id>id>id At any level into the data array, you can access any entry into the subset array. For instance, taking the previous array of data to inject, let's suppose we are into a nested meta elements at the 'data1' level. You may want to access directly the 'Juan' entry. The path will be: The José's status value from the root will be: 3.4 Meta Elements They consist into an injection of a XDataset, called the "data to inject", into the template. The meta language is directly applied on the structure of the data array. The data to inject is a nested set of variables and values with the structure you want (there is no specific construction rules). You can inject nearly anything into a template meta elements. Example of a data array to inject: You can access directly any data into the array with its relative path (relative to the level you are when the metaelements are applied, see below). There are 4 structured meta elements in the XTemplate templates to use the data to inject: Reference, Loops, Condition and Debug. The structure of the meta elements in the template must follow the structure of the data to inject. 3.4.1 References to another template: &&order&& 3.4.1.1 When order is a single id (characters a-z0-9.-_), it will make a call to a sub template with the same set of data and replace the &&...&& with the result. The level in the data set is not changed. Example based on previous array of Fred's data: 3.4.1.2 When order contains 2 parameters separated by a semicolumn :, then second parameter is used to change the level of the data of array, with the subset with this id. The level in the data set is changed to this sub set. Example based on previous array of Fred's data: 3.4.1.3 When order contains 3 parameters separated by a semicolumn :, the second and third parameters are used to search the name of the new template based on the data fields to inject. This is an indirect access to the template. The name of the subtemplate is build with parameter3 as prefix and the content of parameter2 value. The third parameter must be empty. 3.4.2 Loops: @@order@@ 3.4.2.1 Overview This meta element will loop over each itterance of the set of data and concatenate each created template in the same order. You need to declare a sub template for this element. You may aso declare derivated sub templates for the different possible cases of the loop: For instance, If your main subtemplate for your look is called "hobby", you may need a different template for the first element, last element, Nth element, Element with a value "no" in the sport field, etc. The supported postfixes are: When the array to iterate is empty: - .none (for example "There is no hobby") When the array contains elements, it will search in order, the following template and use the first found: - templateid.key.[value] value is the key of the vector line. If the collection has a named key (string) or is a direct array (0, 1, 2...) - templateid.first if it is the first element of the array set (new from v1.01.11) - templateid.last if it is the first element of the array set (new from v1.01.11) - templateid.even if the line number is even - templateid in all other cases (odd is contained here if even is defined) Since v2.1.7, you can also use the pseudo field {{.counter}} into the loop subtemplate, to get the number of the counter of the loop, it is 1-based (first loop is 1, not 0) 3.4.2.2 When order is a single id (characters a-z0-9.-_), it will make a call to the sub template id with the same subset of data with the same id and replace the @@...@@ for each itterance of the data with the result. Example based on previous array of Fred's data: 3.4.2.3 When order contains 2 parameters separated by a semicolumn :, then first parameter is used to change the level of the data of array, with the subset with this id, and the second one for the template to use. Example based on previous array of Fred's data: 3.4.3 Conditional: ??order?? Makes a call to a subtemplate only if the field exists and have a value. This is very userfull to call a sub template for instance when an image or a video is set. When the condition is not met, it will search for the [id].none template. The conditional element does not change the level in the data set. 3.4.3.1 When order is a single id (characters a-z0-9.-_), it will make a call to the sub template id with the same field in the data and replace the ??...?? with the corresponding template Example based on previous array of Fred's data: 3.4.3.2 When order contains 2 parameters separated by a semicolumn :, then second parameter is used to change the level of the data of array, with the subset with this id. Example based on previous array of Fred's data: If the asked field is a catalog, true/false, numbered, you may also use .[value] subtemplates 3.5 Debug Tools: !!order!! There are two keywords to dump the content of the data set. This is very useful when you dont know the code that calls the template, don't remember some values, or for debug facilities. 3.5.1 !!dump!! Will show the totality of the data set, with ids and values. 3.5.1 !!list!! Will show only the tree of parameters, values are not shown.
Package g11n is an internationalization library that offers: I. Initialization Create a new instance of g11n. Each instance handles messages and locales separately. Define a struct with messages. Initialize an instance of the struct through the g11n object. Invoke messages on that instance. II. Choosing locale Load a locale in the g11n instance. Different locale loaders could be registered by implementing the locale.Loader interface. Specify the locale for every message struct initialized by this g11n instance. III. Format parameters The parameters of a message call could be formatted by declaring a special type that implements The format method G11nParam is invoked before substituting a parameter in the message. IV. Format result The result of a message call could be further formatted by declaring a special result type that implements The format method G11nResult is invoked after all parameters have been substituted in the message.
Package monday is a minimalistic translator for month and day of week names in time.Date objects Monday is not an alternative to standard time package. It is a temporary solution to use while the internationalization features are not ready. That's why monday doesn't create any additional parsing algorithms, layout identifiers. It is just a wrapper for time.Format and time.ParseInLocation and uses all the same layout IDs, constants, etc. Format usage: Parse usage: Monday initializes all its data once in the init func and then uses only func calls and local vars. Thus, it's thread-safe and doesn't need any mutexes to be used with.
text is a repository of text-related packages related to internationalization (i18n) and localization (l10n), such as character encodings, text transformations, and locale-specific text handling.
**Please use xcore/v2** **The version 1 is obsolete.** Package xcore is a set of basic objects for programation (XCache for caches, XDataset for data sets, XLanguage for languages and XTemplate for templates). For GO, the actual existing code includes: - XCache: Application Memory Caches for any purpose, with time control and quantity control of object in the cache and also check changes against original source. It is a thread safe cache. - XDataset: Basic nested data structures for any purpose (template injection, configuration files, database records, etc). - XLanguage: language dependent text tables for internationalization of code. The sources can be text or XML file definitions. - XTemplate: template system with meta language to create complex documents (compatible with any text language, HTML, CSS, JS, PDF, XML, etc), heavily used on CMS systems and others. It is already used on sites that serve more than 60 million pages a month (500 pages per second on pike hour) and can be used on multithreading environment safely. XCache is a library to cache all the data you want into current application memory for a very fast access to the data. The access to the data support multithreading and concurrency. For the same reason, this type of cache is not persistent (if you exit the application) and cannot grow too much (as memory is the limit). However, you can control a timeout of each cache piece, and eventually a comparison function against a source (file, database, etc) to invalid the cache. 1. Declare a new XCache with NewXCache() function: 2. Fill in the cache: Once you have declared the cache, you can fill it with anything you want. The main cache object is an interface{} so you can put here anything you need, from simple variables to complex structures. You need to use the Set function: Note the ID is always a string, so convert a database key to string if needed. 3. To use the cache, just ask for your entry with Get function: 4. To maintain the cache: You may need Del function, to delete a specific entry (maybe because you deleted the record in database). You may also need Clean function to deletes a percentage of the cache, or Flush to deletes it all. The Verify function is used to check cache entries against their sources through the Validator function. Be very careful, if the cache is big or the Validator function is complex (maybe ask for a remote server information), the verification may be VERY slow and huge CPU use. The Count function gives some stats about the cache. 5. How to use Verify Function: This function is recommended when the source is local and fast to check (for instance a language file or a template file). When the source is distant (other cluster database, any rpc source on another network, integration of many parts, etc), it is more recommended to create a function that will delete the cache when needed (on demand cache change). The validator function is a func(id, time.Time) bool function. The first parameter is the ID entry in the cache, the second parameter the time of the entry was created. The validator function returns true is the cache is still valid, or false if it needs to be invalidated. The XCache is thread safe. The cache can be limited in quantity of entries and timeout for data. The cache is automanaged (for invalid expired data) and can be cleaned partially or totally manually. The XLanguage table of text entries can be loaded from XML file, XML string or normal text file or string. It is used to keep a table of id=value set of entries in any languages you need, so it is easy to switch between XLanguage instance based on the required language needed. Obviously, any XLanguage you load in any language should have the same id entries translated, for the same use. 1. loading: You can load any file or XML string directly into the object. 1.1 The XML Format is: NAMEOFTABLE is the name of your table entry, for example "loginform", "user_report", etc. LG is the ISO-3369 2 letters language ID, for example "es" for spanish, "en" for english, "fr" for french, etc. ENTRYNAME is the ID of the entry, for example "greating", "yourname", "submitbutton". ENTRYVALUE is the text for your entry, for example "Hello", "You are:", "Save" if your table is in english. 1.2 The flat text format is: ENTRYNAME is the ID of the entry, for example "greating", "yourname", "submitbutton". ENTRYVALUE is the text for your entry, for example "Hello", "You are:", "Save" if your table is in english. There is no name of table or language in this format (you "know" what you are loading). The advantage to use XML format is to have more control over your language, and eventyally add attributes into your entries, for instance you may add attributes translated="yes/no", verified="yes/no", and any other data that your system could insert. The XLanguage will ignore those attributes loading the table. 2. creation: To create a new XLanguage empty structure: There are 4 functions to create the language from a file or string, flat text or XML text: Then you can use the set of basic access functions: SetName/SetLanguage functions are used to set the table name and language of the object (generally to build an object from scratch). GetName/GetLanguage functions are used to get the table name and language of the object (generally when you load it from some source). Set/Get/Del functions are used to add or modify a new entry, read an entry, or deletes an entry in the object. 1. Overview: The XDataSet is a set of interfaces and basic classes ready-to-use to build a standard set of data optionally nested and hierarchical, that can be used for any purpose: - Keep complex data in memory. - Create JSON structures. - Inject data into templates. - Interchange database data (records set and record). You can store into it generic supported data, as well as any complex interface structures: - Int - Float - String - Time - Bool - []Int - []Float - []Time - []Bool - XDataSetDef (anything extended with this interface) - []String - Anything else ( interface{} ) - XDataSetCollectionDef (anything extended with this interface) The generic supported data comes with a set of functions to get/set those data directly into the XDataset. Example: Note that all references to XDataset and XDatasetCollection are pointers, always (to be able to modify the values of them). 2. XDatasetDef interface: It is the interface to describe a simple set of data mapped as "name": value, where value can be of any type. The interface implements a good amount of basic methods to get the value on various format such as GetString("name"), GetInt("name"), etc (see below). If the value is another type as asked, the method should contert it if possible. For instance "key":123 required through GetString("key") should return "123". The XDataset type is a simple map[string]interface{} with all the implemented methods and should be enough to use for almost all required cases. However, you can build any complex structure that extends the interface and implements all the required functions to stay compatible with the XDatasetDef. 3. XDatasetCollectionDef Interface: This is the interface used to extend any type of data as a Collection, i-e an array of XDatasetDef. This is a slice of any XDatasetDef compatible data. The interface implements some methods to work on array structure such as Push, Pop, Shift, Unshift and some methods to search data into the array. The XDatasetCollection type is a simple []DatasetDef with all the implemented methods and should be enough to use for almost all required cases. 1. Overview: This is a class to compile and keep a Template that can be injected with an XDataSet structure of data, with a metalanguage to inject the data. The metalanguage is extremely simple and is made to be useful and **really** separate programation from template code (not like other many generic template systems that just mix code and data). A template is a set of HTML/XML (or any other language) string with a meta language to inject variables and build a final string. The XCore XTemplate system is based on the injection of parameters, language translation strings and data fields directly into the HTML (Or any other language you need) template. The HTML itself (or any other language) is a text code not directly used by the template system, but used to dress the data you want to represent in your preferred language. The variables to inject must be into a XDataSet structure or into a structure extended from XDataSetDef interface. The injection of data is based on a XDataSet structure of values that can be nested into another XDataSet and XDataSetConnection and so on. The template compiler recognize nested arrays to automatically make loops on the information. Templates are made to store reusable HTML code, and overall easily changeable by people that do not know how to write programs. A template can be as simple as a single character (no variables to inject) to a very complex nested, conditional and loops sub-templates. Yes. this is a template, but a very simple one without need to inject any data. Let's go more complex: Having an array of data, we want to paint it beautifull: We can create a template to inject this data into it: 2. Create and use XTemplateData: In sight to create and use templates, you have all those possible options to use: Creates the XTemplate from a string or a file or any other source: 3. Metalanguage Reference: 3.1 Comments: %-- and --% You may use comments into your template. The comments will be discarded immediately at the compilation of the template and do not interfere with the rest of your code. Example: 3.2 Nested Templates: [[...]] and [[]] You can define new nested templates into your main template A nested template is defined by: The templteid is any combination of lowers letters only (a-z), numbers (0-9), and 3 special chars: . (point) - (dash) and _ (underline). The template is closed with [[]]. There is no limits into nesting templates. Any nested template will inheritate all the father elements and can use father elements too. To call a sub-template, you need to use &&templateid&& syntax (described below in this document). Example: You may use more than one id into the same template to avoid repetition of the same code. The different id's are separated with a pipe | Important note: A template will be visible only on the same level of its declaration. For example, if you put a subtemplate "b" into a subtemplate "a", it will not be visible by &&b&& from the top level, but only into the subtemplate "a". 3.3 Simple Elements: ##...## and {{...}} There are 2 types of simple elements. Language elements and Data injector elements (also called field elements). We "logically" define the 2 type of elements. The separation is only for human logic and template filling, however the language information can perfectly fit into the data to inject (and not use ## entries). 3.3.1 Languages elements: ##entry## All the languages elements should have the format: ##entry##. A language entry is generally anything written into your code or page that does not come from a database, and should adapt to the language of the client visiting your site. Using the languages elements may depend on the internationalization of your page. If your page is going to be in a single language forever, you really dont need to use languages entries. The language elements generally carry titles, menu options, tables headers etc. The language entries are set into the "#" entry of the main template XDataset to inject, and is a XLanguage table. Example: With data to inject: 3.3.2 Field elements: {{fieldname}} Fields values should have the format: {{fieldname}}. Your fields source can be a database or any other preferred repository data source. Example: You can access an element with its path into the data set to inject separating each field level with a > (greater than). This will take the name of the second hobby in the dataset defined upper. (collections are 0 indexed). The 1 denotes the second record of the hobbies XDatasetCollection. If the field is not found, it will be replaced with an empty string. Tecnically your field names can be any string in the dataset. However do not use { } or > into the names of your fields or the XTemplate may not use them correctly. We recommend to use lowercase names with numbers and ._- Accents and UTF8 symbols are also welcome. 3.3.3 Scope: When you use an id to point a value, the template will first search into the available ids of the local level. If no id is found, the it will search into the upper levers if any, and so on. Example: At the level of 'data2', using {{appname}} will get back 'DomCore'. At the level of 'key1', using {{appname}} will get back 'Nested App'. At the level of 'key2', using {{appname}} will get back 'DomCore'. At the level of root, 'data1' or 'detail', using {{appname}} will get back an empty string. 3.3.4 Path access: id>id>id>id At any level into the data array, you can access any entry into the subset array. For instance, taking the previous array of data to inject, let's suppose we are into a nested meta elements at the 'data1' level. You may want to access directly the 'Juan' entry. The path will be: The José's status value from the root will be: 3.4 Meta Elements They consist into an injection of a XDataset, called the "data to inject", into the template. The meta language is directly applied on the structure of the data array. The data to inject is a nested set of variables and values with the structure you want (there is no specific construction rules). You can inject nearly anything into a template meta elements. Example of a data array to inject: You can access directly any data into the array with its relative path (relative to the level you are when the metaelements are applied, see below). There are 4 structured meta elements in the XTemplate templates to use the data to inject: Reference, Loops, Condition and Debug. The structure of the meta elements in the template must follow the structure of the data to inject. 3.4.1 References to another template: &&order&& 3.4.1.1 When order is a single id (characters a-z0-9.-_), it will make a call to a sub template with the same set of data and replace the &&...&& with the result. The level in the data set is not changed. Example based on previous array of Fred's data: 3.4.1.2 When order contains 2 parameters separated by a semicolumn :, then second parameter is used to change the level of the data of array, with the subset with this id. The level in the data set is changed to this sub set. Example based on previous array of Fred's data: 3.4.1.3 When order contains 3 parameters separated by a semicolumn :, the second and third parameters are used to search the name of the new template based on the data fields to inject. This is an indirect access to the template. The name of the subtemplate is build with parameter3 as prefix and the content of parameter2 value. The third parameter must be empty. 3.4.2 Loops: @@order@@ 3.4.2.1 Overview This meta element will loop over each itterance of the set of data and concatenate each created template in the same order. You need to declare a sub template for this element. You may aso declare derivated sub templates for the different possible cases of the loop: For instance, If your main subtemplate for your look is called "hobby", you may need a different template for the first element, last element, Nth element, Element with a value "no" in the sport field, etc. The supported postfixes are: When the array to iterate is empty: - .none (for example "There is no hobby") When the array contains elements, it will search in order, the following template and use the first found: - templateid.key.[value] value is the key of the vector line. If the collection has a named key (string) or is a direct array (0, 1, 2...) - templateid.first if it is the first element of the array set (new from v1.01.11) - templateid.last if it is the first element of the array set (new from v1.01.11) - templateid.even if the line number is even - templateid in all other cases (odd is contained here if even is defined) 3.4.2.2 When order is a single id (characters a-z0-9.-_), it will make a call to the sub template id with the same subset of data with the same id and replace the @@...@@ for each itterance of the data with the result. Example based on previous array of Fred's data: 3.4.2.3 When order contains 2 parameters separated by a semicolumn :, then first parameter is used to change the level of the data of array, with the subset with this id, and the second one for the template to use. Example based on previous array of Fred's data: 3.4.3 Conditional: ??order?? Makes a call to a subtemplate only if the field exists and have a value. This is very userfull to call a sub template for instance when an image or a video is set. When the condition is not met, it will search for the [id].none template. The conditional element does not change the level in the data set. 3.4.3.1 When order is a single id (characters a-z0-9.-_), it will make a call to the sub template id with the same field in the data and replace the ??...?? with the corresponding template Example based on previous array of Fred's data: 3.4.3.2 When order contains 2 parameters separated by a semicolumn :, then second parameter is used to change the level of the data of array, with the subset with this id. Example based on previous array of Fred's data: If the asked field is a catalog, true/false, numbered, you may also use .[value] subtemplates 3.5 Debug Tools: !!order!! There are two keywords to dump the content of the data set. This is very useful when you dont know the code that calls the template, don't remember some values, or for debug facilities. 3.5.1 !!dump!! Will show the totality of the data set, with ids and values. 3.5.1 !!list!! Will show only the tree of parameters, values are not shown.
Package intergo implements a simple library for internationalized strings. The library manages a hash map in the form map["language"]["locale"]. The supported format for locale strings is language_locale.encoding. The encoding part is actually ignored, and the form language_locale also works. Of course, it's case-sensitive and the recommended form is language_LOCALE, e.g., en_US is a locale for American English, and pt_BR is for Brazilian Portuguese.
Package curie implements the type for compact URI. It defines a generic syntax for expressing URIs by abbreviated literal as defined by the W3C. https://www.w3.org/TR/2010/NOTE-curie-20101216/ Package curie The type `curie` ("Compact URI") defines a generic syntax for expressing URIs by abbreviated literal as defined by the W3C. https://www.w3.org/TR/2010/NOTE-curie-20101216/. The type supports type safe domain driven design using aspects of hierarchical linked-data. Linked-Data are used widely by Semantic Web to publish structured data so that it can be interlinked by applications. Internationalized Resource Identifiers (IRIs) are key elements to cross-link data structure and establish references (pointers) to data elements. These IRIs may be written as relative, absolute or compact IRIs. The `curie` type is just a formal definition of compact IRI (superset of XML QNames). Another challenge solved by `curie` is a formal mechanism to permit the use of hierarchical extensible name collections and its serialization. All-in-all CURIEs expand to any IRI. Compact URI is superset of XML QNames. It is comprised of two components: a prefix and a suffix, separated by `:`. Omit prefix to declare a relative URI; omit suffix to declare namespace only; omit both components to declare empty URI. See W3C CURIE Syntax 1.0 https://www.w3.org/TR/2010/NOTE-curie-20101216/ ↣ zero: empty compact URI ↣ transform: string ⟼ CURIE ↣ binary compose: CURIE × CURIE ⟼ CURIE ↣ unary decompose: CURIE ⟼ CURIE ↣ rank: |CURIE| ⟼ Int ↣ binary ordering: CURIE ≼ CURIE ⟼ bool Cross-linking of structured data is an essential part of type safe domain driven design. The library helps developers to model relations between data instances using familiar data type: `curie.ID` and `curie.IRI` are sibling, equivalent CURIE data type. `ID` is only used as primary key, `IRI` is a "pointer" to linked-data. CURIE type is core type to organize hierarchies. An application declares `A ⟼ B` hierarchical relation using path at suffix. For example, the root is `curie.New("some:a")`, 2nd rank node `curie.New("some:a/b")` and so on `curie.New("some:a/b/c/e/f")`.
Package datesi18n provides internationalization for programs needing language support for weekdays and months. The package is intended to be used with the dates package. The following code is an example of using the datesi18n package: The output of the program is:
Package i18n offers the following basic internationalization functionality: There's more we'd like to add in the future, including: In order to interact with this package, you must first get a TranslatorFactory instace. Through the TranslatorFactory, you can get a Translator instance. Almost everything in this package is accessed through methods on the Translator struct. About the rules and messages paths: This package ships with built-in rules, and you are welcome to use those directly. However, if there are locales or rules that are missing from what ships directly with this package, or if you desire to use different rules than those that ship with this package, then you can specify additional rules paths. At this time, this package does not ship with built-in messages, other than a few used for the unit tests. You will need to specify your own messages path(s). For both rules and messages paths, you can specify multiple. Paths later in the slice take precedence over packages earlier in the slice. For a basic example of getting a TranslatorFactory instance: For simple message translation, use the Translate function, and send an empty map as the second argument (we'll explain that argument in the next section). You can also pass placeholder values to the translate function. That's what the second argument is for. In this example, we will inject a username into the translation. You can also translate strings with plurals. However, any one message can contain at most one plural. If you want to translate "I need 5 apples and 3 oranges" you are out of luck. The Pluralize method takes 3 arguments. The first is the message key - just like the Translate method. The second argument is a float which is used to determine which plural form to use. The third is a string representation of the number. Why two arguments for the number instead of one? This allows you ultimate flexibility in number formatting to use in the translation while eliminating the need for string number parsing. You can use the "FomatNumber", "FormatCurrency" and "FormatPercent" methods to do locale-based number formatting for numbers, currencies and percentages. If you need to sort a list of strings alphabetically, then you should not use a simple string comparison to do so - this will often result in incorrect results. "ȧ" would normally evaluate as greater than "z", which is not correct in any latin writing system alphabet. Use can use the Sort method on the Translator struct to do an alphabetic sorting that is correct for that locale. Alternatively, you can access the SortUniversal and the SortLocale functions directly without a Translator instance. SortUniversal does not take a specific locale into account when doing the alphabetic sorting, which means it might be slightly less accurate than the SortLocal function. However, there are cases in which the collation rules for a specific locale are unknown, or the sorting needs to be done in a local-agnostic way. For these cases, the SortUniversal function performs a unicode normalization in order to best sort the strings. In order to be flexible, these functions take a generic interface slice and a function for retrieving the value on which to perform the sorting. For example: When getting a Translator instance, the TranslatorFactory will automatically attempt to determine an appropriate fallback Translator for the locale you specify. For locales with specific "flavors", like "en-au" or "zh-hans", the "vanilla" version of that locale will be used if it exists. In these cases that would be "en" and "zh". When creating a TranslatorFactory instance, you can optionally specify a final fallback locale. This will be used if it exists. When determining a fallback, the the factory first checks the less specific versions of the specified locale, if they exist and will ultimate fallback to the global fallback if specified. All of the examples above conveniently ignore errors. We recommend that you DO handle errors. The system is designed to give you a valid result if at all possible, even in errors occur in the process. However, the errors are still returned and may provide you helpful information you might otherwise miss - like missing files, file permissions problems, yaml format problems, missing translations, etc. We recommend that you do some sort of logging of these errors.
Package i18n is a handler and helper for the core (https://godoc.org/github.com/volatile/core). It provides internationalization functions following the client preferences. A translation is associated to a key, which is associated to a language tag, which is part of Locales map. All translations can be stored like this: decimalMark and thousandsMark are special keys that define the digits separators for decimals and thousands when using Tn or Fmtn. With these translations, you need to Init this package (the second argument is the default locale): When a client makes a request, the best locale must be matched to his preferences. To achieve this, you need to Use the handler with one or more matchers: The client locale is set as soon as a matcher is confident. A matcher is a function that returns the locale parsed from core.Context with its level of confidence. These ones are actually available: MatcherAcceptLanguageHeader and MatcherFormValue. A translation can be accessed with T, receiving the core.Context (which contains the matched locale), the translation key, and optional arguments (if the translation contains formatting verbs): If a translation has pluralized forms, you can use Tn and the most appropriate form will be used according to the quantity: will result in "You have 333,000.333 bucks in your basement.". If you use templates, TemplatesFuncs provides a map of all usable functions. Example with package response (https://godoc.org/github.com/volatile/response) package:
Package getoptions - Go option parser inspired on the flexibility of Perl’s GetOpt::Long. It will operate on any given slice of strings and return the remaining (non used) command line arguments. This allows to easily subcommand. The following is a basic example: • Allow passing options and non-options in any order. • Support for `--long` options. • Support for short (`-s`) options with flexible behaviour (see https://github.com/DavidGamba/go-getoptions#operation_modes for details): • Boolean, String, Int and Float64 type options. • Multiple aliases for the same option. e.g. `help`, `man`. • Negatable Boolean options. For example: `--verbose`, `--no-verbose` or `--noverbose`. • Options with Array arguments. The same option can be used multiple times with different arguments. The list of arguments will be saved into an Array like structure inside the program. • Options with array arguments and multiple entries. • When using integer array options with multiple arguments, positive integer ranges are allowed. For example: `1..3` to indicate `1 2 3`. • Options with key value arguments and multiple entries. • Options with Key Value arguments. This allows the same option to be used multiple times with arguments of key value type. For example: `rpmbuild --define name=myrpm --define version=123`. • Supports passing `--` to stop parsing arguments (everything after will be left in the `remaining []string`). • Supports subcommands (stop parsing arguments when non option is passed). • Supports command line options with '='. For example: You can use `--string=mystring` and `--string mystring`. • Allows passing arguments to options that start with dash `-` when passed after equal. For example: `--string=--hello` and `--int=-123`. • Options with optional arguments. If the default argument is not passed the default is set. • Allows abbreviations when the provided option is not ambiguous. • Called method indicates if the option was passed on the command line. • Errors exposed as public variables to allow overriding them for internationalization. • Multiple ways of managing unknown options: • Require order: Allows for subcommands. Stop parsing arguments when the first non-option is found. When mixed with Pass through, it also stops parsing arguments when the first unmatched option is found. • Support for the lonesome dash "-". To indicate, for example, when to read input from STDIO. • Incremental options. Allows the same option to be called multiple times to increment a counter. • Supports case sensitive options. For example, you can use `v` to define `verbose` and `V` to define `Version`. The library will panic if it finds that the programmer (not end user): • Defined the same alias twice. • Defined wrong min and max values for SliceMulti methods.
Package i18n offers the following basic internationalization functionality: There's more we'd like to add in the future, including: In order to interact with this package, you must first get a TranslatorFactory instace. Through the TranslatorFactory, you can get a Translator instance. Almost everything in this package is accessed through methods on the Translator struct. About the rules and messages paths: This package ships with built-in rules, and you are welcome to use those directly. However, if there are locales or rules that are missing from what ships directly with this package, or if you desire to use different rules than those that ship with this package, then you can specify additional rules paths. At this time, this package does not ship with built-in messages, other than a few used for the unit tests. You will need to specify your own messages path(s). For both rules and messages paths, you can specify multiple. Paths later in the slice take precedence over packages earlier in the slice. For a basic example of getting a TranslatorFactory instance: For simple message translation, use the Translate function, and send an empty map as the second argument (we'll explain that argument in the next section). You can also pass placeholder values to the translate function. That's what the second argument is for. In this example, we will inject a username into the translation. You can also translate strings with plurals. However, any one message can contain at most one plural. If you want to translate "I need 5 apples and 3 oranges" you are out of luck. The Pluralize method takes 3 arguments. The first is the message key - just like the Translate method. The second argument is a float which is used to determine which plural form to use. The third is a string representation of the number. Why two arguments for the number instead of one? This allows you ultimate flexibility in number formatting to use in the translation while eliminating the need for string number parsing. You can use the "FomatNumber", "FormatCurrency" and "FormatPercent" methods to do locale-based number formatting for numbers, currencies and percentages. If you need to sort a list of strings alphabetically, then you should not use a simple string comparison to do so - this will often result in incorrect results. "ȧ" would normally evaluate as greater than "z", which is not correct in any latin writing system alphabet. Use can use the Sort method on the Translator struct to do an alphabetic sorting that is correct for that locale. Alternatively, you can access the SortUniversal and the SortLocale functions directly without a Translator instance. SortUniversal does not take a specific locale into account when doing the alphabetic sorting, which means it might be slightly less accurate than the SortLocal function. However, there are cases in which the collation rules for a specific locale are unknown, or the sorting needs to be done in a local-agnostic way. For these cases, the SortUniversal function performs a unicode normalization in order to best sort the strings. In order to be flexible, these functions take a generic interface slice and a function for retrieving the value on which to perform the sorting. For example: When getting a Translator instance, the TranslatorFactory will automatically attempt to determine an appropriate fallback Translator for the locale you specify. For locales with specific "flavors", like "en-au" or "zh-hans", the "vanilla" version of that locale will be used if it exists. In these cases that would be "en" and "zh". When creating a TranslatorFactory instance, you can optionally specify a final fallback locale. This will be used if it exists. When determining a fallback, the the factory first checks the less specific versions of the specified locale, if they exist and will ultimate fallback to the global fallback if specified. All of the examples above conveniently ignore errors. We recommend that you DO handle errors. The system is designed to give you a valid result if at all possible, even in errors occur in the process. However, the errors are still returned and may provide you helpful information you might otherwise miss - like missing files, file permissions problems, yaml format problems, missing translations, etc. We recommend that you do some sort of logging of these errors.
text is a repository of text-related packages related to internationalization (i18n) and localization (l10n), such as character encodings, text transformations, and locale-specific text handling.
Package monday is a minimalistic translator for month and day of week names in time.Date objects Monday is not an alternative to standard time package. It is a temporary solution to use while the internationalization features are not ready. That's why monday doesn't create any additional parsing algorithms, layout identifiers. It is just a wrapper for time.Format and time.ParseInLocation and uses all the same layout IDs, constants, etc. Format usage: Parse usage: Monday initializes all its data once in the init func and then uses only func calls and local vars. Thus, it's thread-safe and doesn't need any mutexes to be used with.
Package i18n is a middleware that provides app Internationalization and Localization of Macaron.
Package i18n is for app Internationalization and Localization.
Config file for running MarketX server Reads in secret variables from the running environment. In the future it should read and parse default values with their respective types. Constants for MarketX server These are not "typed" for simplicity as name prefixes imply underlying types and database saving schema. If manipulations need to be done on the types, they should be aliased. MarketX specific use cases of DocuSign API Currently only supports envelope creation from template, embedded signing and document download. In public domain due to the fact that these APIs should be. MarketX specific use cases of HelloSign API Currently only supports the embedded signature request with template. In public domain due to the fact that these APIs should be. Internationalization and localization maps Golang text package is not ready so custom construction is done here. Router branch for /account/ operations Router branch for /admin/company/ operations Router branch for /admin/deal/ operations Router branch for /admin/user/ operations Router branch for /company/ operations Router branch for /deal/ operations Router branch for /user/ operations Router branch for /wechat/ operations Database schema for MarketX Uses gorm to manage postgresql connections and structures. MarketX specific use cases of North Capital's Transact API: https://api-docs.norcapsecurities.com Since this API is perhaps not going to be re-used in the future, an obligatory "package transact" was not created, but instead this customized version of MarketX Transact, MXT API is formed here. MXT API only handles the db User struct but is db agnostic to leave the API clean with the minimum requirements. All the API calls are in public domain in case of future package organizations and public exposures. Provides an even more specific wrapper for a param validator Validator functions are exported as public since they are not MarketX specific checks.
This is a GSSAPI provider for Go, which expects to be initialized with the name of a dynamically loadable module which can be dlopen'd to get at a C language binding GSSAPI library. The GSSAPI concepts are explained in RFC 2743, "Generic Security Service Application Program Interface Version 2, Update 1". The API calls for C, together with a number of values for constants, come from RFC 2744, "Generic Security Service API Version 2 : C-bindings". Note that the basic GSSAPI bindings for C use the Latin-1 character set. UTF-8 interfaces are specified in RFC 5178, "Generic Security Service Application Program Interface (GSS-API) Internationalization and Domain-Based Service Names and Name Type", in 2008. Looking in 2013, this API does not appear to be provided by either MIT or Heimdal. This API applies solely to hostnames though, which can also be supplied in ACE encoding, bypassing the issue. For now, we assume that hostnames and usercodes are all ASCII-ish and pass UTF-8 into the library. Patches for more comprehensive support welcome.
Package i18n offers the following basic internationalization functionality: There's more we'd like to add in the future, including: In order to interact with this package, you must first get a TranslatorFactory instace. Through the TranslatorFactory, you can get a Translator instance. Almost everything in this package is accessed through methods on the Translator struct. About the rules and messages paths: This package ships with built-in rules, and you are welcome to use those directly. However, if there are locales or rules that are missing from what ships directly with this package, or if you desire to use different rules than those that ship with this package, then you can specify additional rules paths. At this time, this package does not ship with built-in messages, other than a few used for the unit tests. You will need to specify your own messages path(s). For both rules and messages paths, you can specify multiple. Paths later in the slice take precedence over packages earlier in the slice. For a basic example of getting a TranslatorFactory instance: For simple message translation, use the Translate function, and send an empty map as the second argument (we'll explain that argument in the next section). You can also pass placeholder values to the translate function. That's what the second argument is for. In this example, we will inject a username into the translation. You can also translate strings with plurals. However, any one message can contain at most one plural. If you want to translate "I need 5 apples and 3 oranges" you are out of luck. The Pluralize method takes 3 arguments. The first is the message key - just like the Translate method. The second argument is a float which is used to determine which plural form to use. The third is a string representation of the number. Why two arguments for the number instead of one? This allows you ultimate flexibility in number formatting to use in the translation while eliminating the need for string number parsing. You can use the "FomatNumber", "FormatCurrency" and "FormatPercent" methods to do locale-based number formatting for numbers, currencies and percentages. If you need to sort a list of strings alphabetically, then you should not use a simple string comparison to do so - this will often result in incorrect results. "ȧ" would normally evaluate as greater than "z", which is not correct in any latin writing system alphabet. Use can use the Sort method on the Translator struct to do an alphabetic sorting that is correct for that locale. Alternatively, you can access the SortUniversal and the SortLocale functions directly without a Translator instance. SortUniversal does not take a specific locale into account when doing the alphabetic sorting, which means it might be slightly less accurate than the SortLocal function. However, there are cases in which the collation rules for a specific locale are unknown, or the sorting needs to be done in a local-agnostic way. For these cases, the SortUniversal function performs a unicode normalization in order to best sort the strings. In order to be flexible, these functions take a generic interface slice and a function for retrieving the value on which to perform the sorting. For example: When getting a Translator instance, the TranslatorFactory will automatically attempt to determine an appropriate fallback Translator for the locale you specify. For locales with specific "flavors", like "en-au" or "zh-hans", the "vanilla" version of that locale will be used if it exists. In these cases that would be "en" and "zh". When creating a TranslatorFactory instance, you can optionally specify a final fallback locale. This will be used if it exists. When determining a fallback, the the factory first checks the less specific versions of the specified locale, if they exist and will ultimate fallback to the global fallback if specified. All of the examples above conveniently ignore errors. We recommend that you DO handle errors. The system is designed to give you a valid result if at all possible, even in errors occur in the process. However, the errors are still returned and may provide you helpful information you might otherwise miss - like missing files, file permissions problems, yaml format problems, missing translations, etc. We recommend that you do some sort of logging of these errors.
text is a repository of text-related packages related to internationalization (i18n) and localization (l10n), such as character encodings, text transformations, and locale-specific text handling.
Package i18nfoolproof is an Internationalization package that can not fail to get text.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross Field and Cross Struct validation for nested structs and has the ability to dive into arrays and maps of any type. Why not a better error message? because this library intends for you to handle your own error messages. Why should I handle my own errors? Many reasons, for us building an internationalized application I needed to know the field and what validation failed so that I could provide an error in the users specific language. Doing things this way is actually the way the standard library does, see the file.Open method here: https://golang.org/pkg/os/#Open. They return type error to avoid the issue discussed in the following, where err is always != nil: http://stackoverflow.com/a/29138676/3158232 https://github.com/bluesuncorp/validator/issues/134 validator only returns nil or ValidationErrors as type error; so in you code all you need to do is check if the error returned is not nil, and if it's not type cast it to type ValidationErrors like so err.(validator.ValidationErrors) Custom functions can be added Cross Field Validation can be done via the following tags: eqfield, nefield, gtfield, gtefield, ltfield, ltefield, eqcsfield, necsfield, gtcsfield, ftecsfield, ltcsfield and ltecsfield. If however some custom cross field validation is required, it can be done using a custom validation. Why not just have cross fields validation tags i.e. only eqcsfield and not eqfield; the reason is efficiency, if you want to check a field within the same struct eqfield only has to find the field on the same struct, 1 level; but if we used eqcsfield it could be multiple levels down. Multiple validators on a field will process in the order defined Bad Validator definitions are not handled by the library NOTE: Baked In Cross field validation only compares fields on the same struct, if cross field + cross struct validation is needed your own custom validator should be implemented. NOTE2: comma is the default separator of validation tags, if you wish to have a comma included within the parameter i.e. excludesall=, you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C NOTE3: pipe is the default separator of or validation tags, if you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: NOTE: when returning an error the tag returned in FieldError will be the alias tag unless the dive tag is part of the alias; everything after the dive tag is not reported as the alias tag. Also the ActualTag in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package i18n is for app Internationalization and Localization.
text is a repository of text-related packages related to internationalization (i18n) and localization (l10n), such as character encodings, text transformations, and locale-specific text handling.
This is a GSSAPI provider for Go, which expects to be initialized with the name of a dynamically loadable module which can be dlopen'd to get at a C language binding GSSAPI library. The GSSAPI concepts are explained in RFC 2743, "Generic Security Service Application Program Interface Version 2, Update 1". The API calls for C, together with a number of values for constants, come from RFC 2744, "Generic Security Service API Version 2 : C-bindings". Note that the basic GSSAPI bindings for C use the Latin-1 character set. UTF-8 interfaces are specified in RFC 5178, "Generic Security Service Application Program Interface (GSS-API) Internationalization and Domain-Based Service Names and Name Type", in 2008. Looking in 2013, this API does not appear to be provided by either MIT or Heimdal. This API applies solely to hostnames though, which can also be supplied in ACE encoding, bypassing the issue. For now, we assume that hostnames and usercodes are all ASCII-ish and pass UTF-8 into the library. Patches for more comprehensive support welcome.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross Field and Cross Struct validation for nested structs and has the ability to dive into arrays and maps of any type. Why not a better error message? because this library intends for you to handle your own error messages. Why should I handle my own errors? Many reasons, for us building an internationalized application I needed to know the field and what validation failed so that I could provide an error in the users specific language. Custom functions can be added Cross Field Validation can be implemented, for example Start & End Date range validation Multiple validators on a field will process in the order defined Bad Validator definitions are not handled by the library NOTE: Baked In Cross field validation only compares fields on the same struct, if cross field + cross struct validation is needed your own custom validator should be implemented. NOTE2: comma is the default separator of validation tags, if you wish to have a comma included within the parameter i.e. excludesall=, you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C NOTE3: pipe is the default separator of or validation tags, if you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Validator notes: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package i18n is a handler and helper for the core (https://godoc.org/github.com/volatile/core). It provides internationalization functions following the client preferences. A translation is associated to a key, which is associated to a language tag, which is part of Locales map. All translations can be stored like this: decimalMark and thousandsMark are special keys that define the digits separators for decimals and thousands when using Tn or Fmtn. With these translations, you need to Init this package (the second argument is the default locale): When a client makes a request, the best locale must be matched to his preferences. To achieve this, you need to Use the handler with one or more matchers: The client locale is set as soon as a matcher is confident. A matcher is a function that returns the locale parsed from core.Context with its level of confidence. These ones are actually available: MatcherAcceptLanguageHeader and MatcherFormValue. A translation can be accessed with T, receiving the core.Context (which contains the matched locale), the translation key, and optional arguments (if the translation contains formatting verbs): If a translation has pluralized forms, you can use Tn and the most appropriate form will be used according to the quantity: will result in "You have 333,000.333 bucks in your basement.". If you use templates, TemplatesFuncs provides a map of all usable functions. Example with package response (https://godoc.org/github.com/volatile/response) package:
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross Field and Cross Struct validation for nested structs and has the ability to dive into arrays and maps of any type. Why not a better error message? because this library intends for you to handle your own error messages. Why should I handle my own errors? Many reasons, for us building an internationalized application I needed to know the field and what validation failed so that I could provide an error in the users specific language. Custom functions can be added Cross Field Validation can be implemented, for example Start & End Date range validation Multiple validators on a field will process in the order defined Bad Validator definitions are not handled by the library NOTE: Baked In Cross field validation only compares fields on the same struct, if cross field + cross struct validation is needed your own custom validator should be implemented. NOTE2: comma is the default separator of validation tags, if you wish to have a comma included within the parameter i.e. excludesall=, you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C NOTE3: pipe is the default separator of or validation tags, if you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Validator notes: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross-Field and Cross-Struct validation for nested structs and has the ability to dive into arrays and maps of any type. Why not a better error message? Because this library intends for you to handle your own error messages. Why should I handle my own errors? Many reasons. We built an internationalized application and needed to know the field, and what validation failed so we could provide a localized error. Doing things this way is actually the way the standard library does, see the file.Open method here: The authors return type "error" to avoid the issue discussed in the following, where err is always != nil: Validator only returns nil or ValidationErrors as type error; so, in your code all you need to do is check if the error returned is not nil, and if it's not type cast it to type ValidationErrors like so err.(validator.ValidationErrors). Custom functions can be added. Example: Cross-Field Validation can be done via the following tags: If, however, some custom cross-field validation is required, it can be done using a custom validation. Why not just have cross-fields validation tags (i.e. only eqcsfield and not eqfield)? The reason is efficiency. If you want to check a field within the same struct "eqfield" only has to find the field on the same struct (1 level). But, if we used "eqcsfield" it could be multiple levels down. Example: Multiple validators on a field will process in the order defined. Example: Bad Validator definitions are not handled by the library. Example: Baked In Cross-Field validation only compares fields on the same struct. If Cross-Field + Cross-Struct validation is needed you should implement your own custom validator. Comma (",") is the default separator of validation tags. If you wish to have a comma included within the parameter (i.e. excludesall=,) you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C. Pipe ("|") is the default separator of validation tags. If you wish to have a pipe included within the parameter i.e. excludesall=| you will need to use the UTF-8 hex representation 0x7C, which is replaced in the code as a pipe, so the above will become excludesall=0x7C Here is a list of the current built in validators: Tells the validation to skip this struct field; this is particularly handy in ignoring embedded structs from being validated. (Usage: -) This is the 'or' operator allowing multiple validators to be used and accepted. (Usage: rbg|rgba) <-- this would allow either rgb or rgba colors to be accepted. This can also be combined with 'and' for example ( Usage: omitempty,rgb|rgba) When a field that is a nested struct is encountered, and contains this flag any validation on the nested struct will be run, but none of the nested struct fields will be validated. This is usefull if inside of you program you know the struct will be valid, but need to verify it has been assigned. NOTE: only "required" and "omitempty" can be used on a struct itself. Same as structonly tag except that any struct level validations will not run. Is a special tag without a validation function attached. It is used when a field is a Pointer, Interface or Invalid and you wish to validate that it exists. Example: want to ensure a bool exists if you define the bool as a pointer and use exists it will ensure there is a value; couldn't use required as it would fail when the bool was false. exists will fail is the value is a Pointer, Interface or Invalid and is nil. Allows conditional validation, for example if a field is not set with a value (Determined by the "required" validator) then other validation such as min or max won't run, but if a value is set validation will run. This tells the validator to dive into a slice, array or map and validate that level of the slice, array or map with the validation tags that follow. Multidimensional nesting is also supported, each level you wish to dive will require another dive tag. Example #1 Example #2 This validates that the value is not the data types default zero value. For numbers ensures value is not zero. For strings ensures value is not "". For slices, maps, pointers, interfaces, channels and functions ensures the value is not nil. For numbers, max will ensure that the value is equal to the parameter given. For strings, it checks that the string length is exactly that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, max will ensure that the value is less than or equal to the parameter given. For strings, it checks that the string length is at most that number of characters. For slices, arrays, and maps, validates the number of items. For numbers, min will ensure that the value is greater or equal to the parameter given. For strings, it checks that the string length is at least that number of characters. For slices, arrays, and maps, validates the number of items. For strings & numbers, eq will ensure that the value is equal to the parameter given. For slices, arrays, and maps, validates the number of items. For strings & numbers, ne will ensure that the value is not equal to the parameter given. For slices, arrays, and maps, validates the number of items. For numbers, this will ensure that the value is greater than the parameter given. For strings, it checks that the string length is greater than that number of characters. For slices, arrays and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than time.Now.UTC(). Same as 'min' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is greater than or equal to time.Now.UTC(). For numbers, this will ensure that the value is less than the parameter given. For strings, it checks that the string length is less than that number of characters. For slices, arrays, and maps it validates the number of items. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than time.Now.UTC(). Same as 'max' above. Kept both to make terminology with 'len' easier. Example #1 Example #2 (time.Time) For time.Time ensures the time value is less than or equal to time.Now.UTC(). This will validate the field value against another fields value either within a struct or passed in field. Example #1: Example #2: Field Equals Another Field (relative) This does the same as eqfield except that it validates the field provided relative to the top level struct. This will validate the field value against another fields value either within a struct or passed in field. Examples: Field Does Not Equal Another Field (relative) This does the same as nefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as gtefield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltfield except that it validates the field provided relative to the top level struct. Only valid for Numbers and time.Time types, this will validate the field value against another fields value either within a struct or passed in field. usage examples are for validation of a Start and End date: Example #1: Example #2: This does the same as ltefield except that it validates the field provided relative to the top level struct. This validates that a string value contains alpha characters only This validates that a string value contains alphanumeric characters only This validates that a string value contains a basic numeric value. basic excludes exponents etc... This validates that a string value contains a valid hexadecimal. This validates that a string value contains a valid hex color including hashtag (#) This validates that a string value contains a valid rgb color This validates that a string value contains a valid rgba color This validates that a string value contains a valid hsl color This validates that a string value contains a valid hsla color This validates that a string value contains a valid email This may not conform to all possibilities of any rfc standard, but neither does any email provider accept all posibilities. This validates that a string value contains a valid url This will accept any url the golang request uri accepts but must contain a schema for example http:// or rtmp:// This validates that a string value contains a valid uri This will accept any uri the golang request uri accepts This validates that a string value contains a valid base64 value. Although an empty string is valid base64 this will report an empty string as an error, if you wish to accept an empty string as valid you can use this with the omitempty tag. This validates that a string value contains the substring value. This validates that a string value contains any Unicode code points in the substring value. This validates that a string value contains the supplied rune value. This validates that a string value does not contain the substring value. This validates that a string value does not contain any Unicode code points in the substring value. This validates that a string value does not contain the supplied rune value. This validates that a string value contains a valid isbn10 or isbn13 value. This validates that a string value contains a valid isbn10 value. This validates that a string value contains a valid isbn13 value. This validates that a string value contains a valid UUID. This validates that a string value contains a valid version 3 UUID. This validates that a string value contains a valid version 4 UUID. This validates that a string value contains a valid version 5 UUID. This validates that a string value contains only ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains only printable ASCII characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains one or more multibyte characters. NOTE: if the string is blank, this validates as true. This validates that a string value contains a valid DataURI. NOTE: this will also validate that the data portion is valid base64 This validates that a string value contains a valid latitude. This validates that a string value contains a valid longitude. This validates that a string value contains a valid U.S. Social Security Number. This validates that a string value contains a valid IP Adress. This validates that a string value contains a valid v4 IP Adress. This validates that a string value contains a valid v6 IP Adress. This validates that a string value contains a valid CIDR Adress. This validates that a string value contains a valid v4 CIDR Adress. This validates that a string value contains a valid v6 CIDR Adress. This validates that a string value contains a valid resolvable TCP Adress. This validates that a string value contains a valid resolvable v4 TCP Adress. This validates that a string value contains a valid resolvable v6 TCP Adress. This validates that a string value contains a valid resolvable UDP Adress. This validates that a string value contains a valid resolvable v4 UDP Adress. This validates that a string value contains a valid resolvable v6 UDP Adress. This validates that a string value contains a valid resolvable IP Adress. This validates that a string value contains a valid resolvable v4 IP Adress. This validates that a string value contains a valid resolvable v6 IP Adress. This validates that a string value contains a valid Unix Adress. This validates that a string value contains a valid MAC Adress. Note: See Go's ParseMAC for accepted formats and types: NOTE: When returning an error, the tag returned in "FieldError" will be the alias tag unless the dive tag is part of the alias. Everything after the dive tag is not reported as the alias tag. Also, the "ActualTag" in the before case will be the actual tag within the alias that failed. Here is a list of the current built in alias tags: Validator notes: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross Field validation and even Cross Field Cross Struct validation for nested structs. Built In Validator A simple example usage: The error can be used like so Both StructValidationErrors and FieldValidationError implement the Error interface but it's intended use is for development + debugging, not a production error message. Why not a better error message? because this library intends for you to handle your own error messages Why should I handle my own errors? Many reasons, for us building an internationalized application I needed to know the field and what validation failed so that I could provide an error in the users specific language. The hierarchical error structure is hard to work with sometimes.. Agreed Flatten function to the rescue! Flatten will return a map of FieldValidationError's but the field name will be namespaced. Custom functions can be added Cross Field Validation can be implemented, for example Start & End Date range validation Multiple validators on a field will process in the order defined Bad Validator definitions are not handled by the library NOTE: Baked In Cross field validation only compares fields on the same struct, if cross field + cross struct validation is needed your own custom validator should be implemented. Here is a list of the current built in validators: Validator notes: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
This is a GSSAPI provider for Go, which expects to be initialized with the name of a dynamically loadable module which can be dlopen'd to get at a C language binding GSSAPI library. The GSSAPI concepts are explained in RFC 2743, "Generic Security Service Application Program Interface Version 2, Update 1". The API calls for C, together with a number of values for constants, come from RFC 2744, "Generic Security Service API Version 2 : C-bindings". Note that the basic GSSAPI bindings for C use the Latin-1 character set. UTF-8 interfaces are specified in RFC 5178, "Generic Security Service Application Program Interface (GSS-API) Internationalization and Domain-Based Service Names and Name Type", in 2008. Looking in 2013, this API does not appear to be provided by either MIT or Heimdal. This API applies solely to hostnames though, which can also be supplied in ACE encoding, bypassing the issue. For now, we assume that hostnames and usercodes are all ASCII-ish and pass UTF-8 into the library. Patches for more comprehensive support welcome.
Package validator implements value validations for structs and individual fields based on tags. It can also handle Cross Field and Cross Struct validation for nested structs. Validate A simple example usage: The error can be used like so Both StructErrors and FieldError implement the Error interface but it's intended use is for development + debugging, not a production error message. Why not a better error message? because this library intends for you to handle your own error messages Why should I handle my own errors? Many reasons, for us building an internationalized application I needed to know the field and what validation failed so that I could provide an error in the users specific language. The hierarchical error structure is hard to work with sometimes.. Agreed Flatten function to the rescue! Flatten will return a map of FieldError's but the field name will be namespaced. Custom functions can be added Cross Field Validation can be implemented, for example Start & End Date range validation Multiple validators on a field will process in the order defined Bad Validator definitions are not handled by the library NOTE: Baked In Cross field validation only compares fields on the same struct, if cross field + cross struct validation is needed your own custom validator should be implemented. NOTE2: comma is the default separator of validation tags, if you wish to have a comma included within the parameter i.e. excludesall=, you will need to use the UTF-8 hex representation 0x2C, which is replaced in the code as a comma, so the above will become excludesall=0x2C Here is a list of the current built in validators: Validator notes: This package panics when bad input is provided, this is by design, bad code like that should not make it to production.
text is a repository of text-related packages related to internationalization (i18n) and localization (l10n), such as character encodings, text transformations, and locale-specific text handling.
text is a repository of text-related packages related to internationalization (i18n) and localization (l10n), such as character encodings, text transformations, and locale-specific text handling.
text is a repository of text-related packages related to internationalization (i18n) and localization (l10n), such as character encodings, text transformations, and locale-specific text handling.
Package i18n is for app Internationalization and Localization.
Package getoptions - Go option parser inspired on the flexibility of Perl’s GetOpt::Long. It will operate on any given slice of strings and return the remaining (non used) command line arguments. This allows to easily subcommand. The following is a basic example: • Allow passing options and non-options in any order. • Support for `--long` options. • Support for short (`-s`) options with flexible behaviour (see https://github.com/DavidGamba/go-getoptions#operation_modes for details): • Boolean, String, Int and Float64 type options. • Multiple aliases for the same option. e.g. `help`, `man`. • Negatable Boolean options. For example: `--verbose`, `--no-verbose` or `--noverbose`. • Options with Array arguments. The same option can be used multiple times with different arguments. The list of arguments will be saved into an Array like structure inside the program. • Options with array arguments and multiple entries. • When using integer array options with multiple arguments, positive integer ranges are allowed. For example: `1..3` to indicate `1 2 3`. • Options with key value arguments and multiple entries. • Options with Key Value arguments. This allows the same option to be used multiple times with arguments of key value type. For example: `rpmbuild --define name=myrpm --define version=123`. • Supports passing `--` to stop parsing arguments (everything after will be left in the `remaining []string`). • Supports subcommands (stop parsing arguments when non option is passed). • Supports command line options with '='. For example: You can use `--string=mystring` and `--string mystring`. • Allows passing arguments to options that start with dash `-` when passed after equal. For example: `--string=--hello` and `--int=-123`. • Options with optional arguments. If the default argument is not passed the default is set. • Allows abbreviations when the provided option is not ambiguous. • Called method indicates if the option was passed on the command line. • Errors exposed as public variables to allow overriding them for internationalization. • Multiple ways of managing unknown options: • Require order: Allows for subcommands. Stop parsing arguments when the first non-option is found. When mixed with Pass through, it also stops parsing arguments when the first unmatched option is found. • Support for the lonesome dash "-". To indicate, for example, when to read input from STDIO. • Incremental options. Allows the same option to be called multiple times to increment a counter. • Supports case sensitive options. For example, you can use `v` to define `verbose` and `V` to define `Version`. The library will panic if it finds that the programmer (not end user): • Defined the same alias twice. • Defined wrong min and max values for SliceMulti methods.
This is a GSSAPI provider for Go, which expects to be initialized with the name of a dynamically loadable module which can be dlopen'd to get at a C language binding GSSAPI library. The GSSAPI concepts are explained in RFC 2743, "Generic Security Service Application Program Interface Version 2, Update 1". The API calls for C, together with a number of values for constants, come from RFC 2744, "Generic Security Service API Version 2 : C-bindings". Note that the basic GSSAPI bindings for C use the Latin-1 character set. UTF-8 interfaces are specified in RFC 5178, "Generic Security Service Application Program Interface (GSS-API) Internationalization and Domain-Based Service Names and Name Type", in 2008. Looking in 2013, this API does not appear to be provided by either MIT or Heimdal. This API applies solely to hostnames though, which can also be supplied in ACE encoding, bypassing the issue. For now, we assume that hostnames and usercodes are all ASCII-ish and pass UTF-8 into the library. Patches for more comprehensive support welcome.