Package secp256k1 implements support for the elliptic curves needed for Decred. Decred uses elliptic curve cryptography using koblitz curves (specifically secp256k1) for cryptographic functions. See https://www.secg.org/sec2-v2.pdf for details on the standard. This package provides the data structures and functions implementing the crypto/elliptic Curve interface in order to permit using these curves with the standard crypto/ecdsa package provided with go. Helper functionality is provided to parse signatures and public keys from standard formats. It was designed for use with dcrd, but should be general enough for other uses of elliptic curve crypto. It was originally based on some initial work by ThePiachu, but has significantly diverged since then. This example demonstrates decrypting a message using a private key that is first parsed from raw bytes. This example demonstrates encrypting a message for a public key that is first parsed from raw bytes, then decrypting it using the corresponding private key. This example demonstrates signing a message with a secp256k1 private key that is first parsed form raw bytes and serializing the generated signature. This example demonstrates verifying a secp256k1 signature against a public key that is first parsed from raw bytes. The signature is also parsed from raw bytes.
Package secp256k1 implements support for the elliptic curves needed for Decred. Decred uses elliptic curve cryptography using koblitz curves (specifically secp256k1) for cryptographic functions. See https://www.secg.org/sec2-v2.pdf for details on the standard. This package provides the data structures and functions implementing the crypto/elliptic Curve interface in order to permit using these curves with the standard crypto/ecdsa package provided with go. Helper functionality is provided to parse signatures and public keys from standard formats. It was designed for use with dcrd, but should be general enough for other uses of elliptic curve crypto. It was originally based on some initial work by ThePiachu, but has significantly diverged since then. This example demonstrates decrypting a message using a private key that is first parsed from raw bytes. This example demonstrates encrypting a message for a public key that is first parsed from raw bytes, then decrypting it using the corresponding private key. This example demonstrates signing a message with a secp256k1 private key that is first parsed form raw bytes and serializing the generated signature. This example demonstrates verifying a secp256k1 signature against a public key that is first parsed from raw bytes. The signature is also parsed from raw bytes.
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: If these "advanced" features are not needed, a simple UDP query can be send, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to a request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. see http://miek.nl/2014/September/21/idn-and-private-rr-in-go-dns/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing AXFR/IXFR, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: For asynchronous queries it is easy to wrap Exchange() in a goroutine. Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to an request. Signature generation, signature verification and key generation are all supported. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines a standard RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: TRANSACTION SIGNATURE (TSIG) An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1 and HmacSHA256. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an AXFR (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 85.223.71.124 You can now read the records from the AXFR as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. 3.2.4 - Table Of Metavalues Used In Prerequisite Section The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. 3.4.2.6 - Table Of Metavalues Used In Update Section
Package pbc provides structures for building pairing-based cryptosystems. It is a wrapper around the Pairing-Based Cryptography (PBC) Library authored by Ben Lynn (https://crypto.stanford.edu/pbc/). This wrapper provides access to all PBC functions. It supports generation of various types of elliptic curves and pairings, element initialization, I/O, and arithmetic. These features can be used to quickly build pairing-based or conventional cryptosystems. The PBC library is designed to be extremely fast. Internally, it uses GMP for arbitrary-precision arithmetic. It also includes a wide variety of optimizations that make pairing-based cryptography highly efficient. To improve performance, PBC does not perform type checking to ensure that operations actually make sense. The Go wrapper provides the ability to add compatibility checks to most operations, or to use unchecked elements to maximize performance. Since this library provides low-level access to pairing primitives, it is very easy to accidentally construct insecure systems. This library is intended to be used by cryptographers or to implement well-analyzed cryptosystems. Cryptographic pairings are defined over three mathematical groups: G1, G2, and GT, where each group is typically of the same order r. Additionally, a bilinear map e maps a pair of elements — one from G1 and another from G2 — to an element in GT. This map e has the following additional property: If G1 == G2, then a pairing is said to be symmetric. Otherwise, it is asymmetric. Pairings can be used to construct a variety of efficient cryptosystems. The PBC library currently supports 5 different types of pairings, each with configurable parameters. These types are designated alphabetically, roughly in chronological order of introduction. Type A, D, E, F, and G pairings are implemented in the library. Each type has different time and space requirements. For more information about the types, see the documentation for the corresponding generator calls, or the PBC manual page at https://crypto.stanford.edu/pbc/manual/ch05s01.html. This package must be compiled using cgo. It also requires the installation of GMP and PBC. During the build process, this package will attempt to include <gmp.h> and <pbc/pbc.h>, and then dynamically link to GMP and PBC. Most systems include a package for GMP. To install GMP in Debian / Ubuntu: For an RPM installation with YUM: For installation with Fink (http://www.finkproject.org/) on Mac OS X: For more information or to compile from source, visit https://gmplib.org/ To install the PBC library, download the appropriate files for your system from https://crypto.stanford.edu/pbc/download.html. PBC has three dependencies: the gcc compiler, flex (http://flex.sourceforge.net/), and bison (https://www.gnu.org/software/bison/). See the respective sites for installation instructions. Most distributions include packages for these libraries. For example, in Debian / Ubuntu: The PBC source can be compiled and installed using the usual GNU Build System: After installing, you may need to rebuild the search path for libraries: It is possible to install the package on Windows through the use of MinGW and MSYS. MSYS is required for installing PBC, while GMP can be installed through a package. Based on your MinGW installation, you may need to add "-I/usr/local/include" to CPPFLAGS and "-L/usr/local/lib" to LDFLAGS when building PBC. Likewise, you may need to add these options to CGO_CPPFLAGS and CGO_LDFLAGS when installing this package. This package is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. For additional details, see the COPYING and COPYING.LESSER files. This example generates a pairing and some random group elements, then applies the pairing operation. This example computes and verifies a Boneh-Lynn-Shacham signature in a simulated conversation between Alice and Bob.
Package pbc provides structures for building pairing-based cryptosystems. It is a wrapper around the Pairing-Based Cryptography (PBC) Library authored by Ben Lynn (https://crypto.stanford.edu/pbc/). This wrapper provides access to all PBC functions. It supports generation of various types of elliptic curves and pairings, element initialization, I/O, and arithmetic. These features can be used to quickly build pairing-based or conventional cryptosystems. The PBC library is designed to be extremely fast. Internally, it uses GMP for arbitrary-precision arithmetic. It also includes a wide variety of optimizations that make pairing-based cryptography highly efficient. To improve performance, PBC does not perform type checking to ensure that operations actually make sense. The Go wrapper provides the ability to add compatibility checks to most operations, or to use unchecked elements to maximize performance. Since this library provides low-level access to pairing primitives, it is very easy to accidentally construct insecure systems. This library is intended to be used by cryptographers or to implement well-analyzed cryptosystems. Cryptographic pairings are defined over three mathematical groups: G1, G2, and GT, where each group is typically of the same order r. Additionally, a bilinear map e maps a pair of elements — one from G1 and another from G2 — to an element in GT. This map e has the following additional property: If G1 == G2, then a pairing is said to be symmetric. Otherwise, it is asymmetric. Pairings can be used to construct a variety of efficient cryptosystems. The PBC library currently supports 5 different types of pairings, each with configurable parameters. These types are designated alphabetically, roughly in chronological order of introduction. Type A, D, E, F, and G pairings are implemented in the library. Each type has different time and space requirements. For more information about the types, see the documentation for the corresponding generator calls, or the PBC manual page at https://crypto.stanford.edu/pbc/manual/ch05s01.html. This package must be compiled using cgo. It also requires the installation of GMP and PBC. During the build process, this package will attempt to include <gmp.h> and <pbc/pbc.h>, and then dynamically link to GMP and PBC. Most systems include a package for GMP. To install GMP in Debian / Ubuntu: For an RPM installation with YUM: For installation with Fink (http://www.finkproject.org/) on Mac OS X: For more information or to compile from source, visit https://gmplib.org/ To install the PBC library, download the appropriate files for your system from https://crypto.stanford.edu/pbc/download.html. PBC has three dependencies: the gcc compiler, flex (http://flex.sourceforge.net/), and bison (https://www.gnu.org/software/bison/). See the respective sites for installation instructions. Most distributions include packages for these libraries. For example, in Debian / Ubuntu: The PBC source can be compiled and installed using the usual GNU Build System: After installing, you may need to rebuild the search path for libraries: It is possible to install the package on Windows through the use of MinGW and MSYS. MSYS is required for installing PBC, while GMP can be installed through a package. Based on your MinGW installation, you may need to add "-I/usr/local/include" to CPPFLAGS and "-L/usr/local/lib" to LDFLAGS when building PBC. Likewise, you may need to add these options to CGO_CPPFLAGS and CGO_LDFLAGS when installing this package. This package is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. For additional details, see the COPYING and COPYING.LESSER files. This example generates a pairing and some random group elements, then applies the pairing operation. This example computes and verifies a Boneh-Lynn-Shacham signature in a simulated conversation between Alice and Bob.
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: If these "advanced" features are not needed, a simple UDP query can be send, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to an request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. see http://miek.nl/posts/2014/Sep/21/Private%20RRs%20and%20IDN%20in%20Go%20DNS/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
cryptography provides functions implementing commonly needed cryptographic operations - symmetric encryption, digital signatures, hashes, time based one time passwords. It presents a compact and ready-to-go cryptographic toolbox for developers. The package is intended to step on trustworthy cryptographic implementations from the Go standard library and the Google Cloud KMS API offering easy to use and intendedly safe cryptographic utilities for a broad set of development cases. Note of caution: please do not try to change the internal workings of the functions unless you do know what you are doing. If there is a security concern or a recommendation it would be warmly welcomed and promtly addressed.
Package libtrust provides an interface for managing authentication and authorization using public key cryptography. Authentication is handled using the identity attached to the public key and verified through TLS x509 certificates, a key challenge, or signature. Authorization and access control is managed through a trust graph distributed between both remote trust servers and locally cached and managed data.
Package dns implements a full featured interface to the Domain Name System. Server- and client-side programming is supported. The package allows complete control over what is send out to the DNS. The package API follows the less-is-more principle, by presenting a small, clean interface. The package dns supports (asynchronous) querying/replying, incoming/outgoing zone transfers, TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing. Note that domain names MUST be fully qualified, before sending them, unqualified names in a message will result in a packing failure. Resource records are native types. They are not stored in wire format. Basic usage pattern for creating a new resource record: Or directly from a string: Or when the default TTL (3600) and class (IN) suit you: Or even: In the DNS messages are exchanged, these messages contain resource records (sets). Use pattern for creating a message: Or when not certain if the domain name is fully qualified: The message m is now a message with the question section set to ask the MX records for the miek.nl. zone. The following is slightly more verbose, but more flexible: After creating a message it can be send. Basic use pattern for synchronous querying the DNS at a server configured on 127.0.0.1 and port 53: Suppressing multiple outstanding queries (with the same question, type and class) is as easy as setting: If these "advanced" features are not needed, a simple UDP query can be send, with: When this functions returns you will get dns message. A dns message consists out of four sections. The question section: in.Question, the answer section: in.Answer, the authority section: in.Ns and the additional section: in.Extra. Each of these sections (except the Question section) contain a []RR. Basic use pattern for accessing the rdata of a TXT RR as the first RR in the Answer section: Both domain names and TXT character strings are converted to presentation form both when unpacked and when converted to strings. For TXT character strings, tabs, carriage returns and line feeds will be converted to \t, \r and \n respectively. Back slashes and quotations marks will be escaped. Bytes below 32 and above 127 will be converted to \DDD form. For domain names, in addition to the above rules brackets, periods, spaces, semicolons and the at symbol are escaped. DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses public key cryptography to sign resource records. The public keys are stored in DNSKEY records and the signatures in RRSIG records. Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK) bit to an request. Signature generation, signature verification and key generation are all supported. Dynamic updates reuses the DNS message format, but renames three of the sections. Question is Zone, Answer is Prerequisite, Authority is Update, only the Additional is not renamed. See RFC 2136 for the gory details. You can set a rather complex set of rules for the existence of absence of certain resource records or names in a zone to specify if resource records should be added or removed. The table from RFC 2136 supplemented with the Go DNS function shows which functions exist to specify the prerequisites. 3.2.4 - Table Of Metavalues Used In Prerequisite Section The prerequisite section can also be left empty. If you have decided on the prerequisites you can tell what RRs should be added or deleted. The next table shows the options you have and what functions to call. 3.4.2.6 - Table Of Metavalues Used In Update Section An TSIG or transaction signature adds a HMAC TSIG record to each message sent. The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512. Basic use pattern when querying with a TSIG name "axfr." (note that these key names must be fully qualified - as they are domain names) and the base64 secret "so6ZGir4GPAqINNh9U5c3A==": When requesting an zone transfer (almost all TSIG usage is when requesting zone transfers), with TSIG, this is the basic use pattern. In this example we request an AXFR for miek.nl. with TSIG key named "axfr." and secret "so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54: You can now read the records from the transfer as they come in. Each envelope is checked with TSIG. If something is not correct an error is returned. Basic use pattern validating and replying to a message that has TSIG set. RFC 6895 sets aside a range of type codes for private use. This range is 65,280 - 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these can be used, before requesting an official type code from IANA. see http://miek.nl/posts/2014/Sep/21/Private%20RRs%20and%20IDN%20in%20Go%20DNS/ for more information. EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by RFC 6891. It defines an new RR type, the OPT RR, which is then completely abused. Basic use pattern for creating an (empty) OPT RR: The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces. Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and EDNS0_SUBNET (draft-vandergaast-edns-client-subnet-02). Note that these options may be combined in an OPT RR. Basic use pattern for a server to check if (and which) options are set: SIG(0) From RFC 2931: It works like TSIG, except that SIG(0) uses public key cryptography, instead of the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256, ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512. Signing subsequent messages in multi-message sessions is not implemented.
Package secp256k1 implements optimized secp256k1 elliptic curve operations. This package provides an optimized pure Go implementation of elliptic curve cryptography operations over the secp256k1 curve as well as data structures and functions for working with public and private secp256k1 keys. See https://www.secg.org/sec2-v2.pdf for details on the standard. In addition, sub packages are provided to produce, verify, parse, and serialize ECDSA signatures and EC-Schnorr-DCRv0 (a custom Schnorr-based signature scheme specific to Decred) signatures. See the README.md files in the relevant sub packages for more details about those aspects. An overview of the features provided by this package are as follows: It also provides an implementation of the Go standard library crypto/elliptic Curve interface via the S256 function so that it may be used with other packages in the standard library such as crypto/tls, crypto/x509, and crypto/ecdsa. However, in the case of ECDSA, it is highly recommended to use the ecdsa sub package of this package instead since it is optimized specifically for secp256k1 and is significantly faster as a result. Although this package was primarily written for dcrd, it has intentionally been designed so it can be used as a standalone package for any projects needing to use optimized secp256k1 elliptic curve cryptography. Finally, a comprehensive suite of tests is provided to provide a high level of quality assurance. At the time of this writing, the primary public key cryptography in widespread use on the Decred network used to secure coins is based on elliptic curves defined by the secp256k1 domain parameters. This example demonstrates use of GenerateSharedSecret to encrypt a message for a recipient's public key, and subsequently decrypt the message using the recipient's private key.
Package secp256k1 implements support for the elliptic curves needed for Decred. Decred uses elliptic curve cryptography using koblitz curves (specifically secp256k1) for cryptographic functions. See https://www.secg.org/sec2-v2.pdf for details on the standard. This package provides the data structures and functions implementing the crypto/elliptic Curve interface in order to permit using these curves with the standard crypto/ecdsa package provided with go. Helper functionality is provided to parse signatures and public keys from standard formats. It was designed for use with dcrd, but should be general enough for other uses of elliptic curve crypto. It was originally based on some initial work by ThePiachu, but has significantly diverged since then. This example demonstrates decrypting a message using a private key that is first parsed from raw bytes. This example demonstrates encrypting a message for a public key that is first parsed from raw bytes, then decrypting it using the corresponding private key. This example demonstrates signing a message with a secp256k1 private key that is first parsed form raw bytes and serializing the generated signature. This example demonstrates verifying a secp256k1 signature against a public key that is first parsed from raw bytes. The signature is also parsed from raw bytes.
Package secp256k1 implements optimized secp256k1 elliptic curve operations. This package provides an optimized pure Go implementation of elliptic curve cryptography operations over the secp256k1 curve as well as data structures and functions for working with public and private secp256k1 keys. See https://www.secg.org/sec2-v2.pdf for details on the standard. In addition, sub packages are provided to produce, verify, parse, and serialize ECDSA signatures and EC-Schnorr-DCRv0 (a custom Schnorr-based signature scheme specific to Decred) signatures. See the README.md files in the relevant sub packages for more details about those aspects. An overview of the features provided by this package are as follows: It also provides an implementation of the Go standard library crypto/elliptic Curve interface via the S256 function so that it may be used with other packages in the standard library such as crypto/tls, crypto/x509, and crypto/ecdsa. However, in the case of ECDSA, it is highly recommended to use the ecdsa sub package of this package instead since it is optimized specifically for secp256k1 and is significantly faster as a result. Although this package was primarily written for dcrd, it has intentionally been designed so it can be used as a standalone package for any projects needing to use optimized secp256k1 elliptic curve cryptography. Finally, a comprehensive suite of tests is provided to provide a high level of quality assurance. At the time of this writing, the primary public key cryptography in widespread use on the Decred network used to secure coins is based on elliptic curves defined by the secp256k1 domain parameters. This example demonstrates use of GenerateSharedSecret to encrypt a message for a recipient's public key, and subsequently decrypt the message using the recipient's private key.
Package btcec implements support for the elliptic curves needed for bitcoin. Bitcoin uses elliptic curve cryptography using koblitz curves (specifically secp256k1) for cryptographic functions. See http://www.secg.org/collateral/sec2_final.pdf for details on the standard. This package provides the data structures and functions implementing the crypto/elliptic Curve interface in order to permit using these curves with the standard crypto/ecdsa package provided with go. Helper functionality is provided to parse signatures and public keys from standard formats. It was designed for use with ltcd, but should be general enough for other uses of elliptic curve crypto. It was originally based on some initial work by ThePiachu, but has significantly diverged since then. This example demonstrates decrypting a message using a private key that is first parsed from raw bytes. This example demonstrates encrypting a message for a public key that is first parsed from raw bytes, then decrypting it using the corresponding private key. This example demonstrates signing a message with a secp256k1 private key that is first parsed form raw bytes and serializing the generated signature. This example demonstrates verifying a secp256k1 signature against a public key that is first parsed from raw bytes. The signature is also parsed from raw bytes.
Package sharedsecret is implementation of Shamir's Secret Sharing algorithm. Shamir's Secret Sharing is an algorithm in cryptography created by Adi Shamir. It is a form of secret sharing, where a secret is divided into parts, giving each participant its own unique part. To reconstruct the original secret, a minimum number of parts is required. In the threshold scheme this number is less than the total number of parts. Otherwise all participants are needed to reconstruct the original secret. See (wiki page) https://en.wikipedia.org/wiki/Shamir's_Secret_Sharing. With the `Distribute` function, a given secret can be distributed to shares. With the `New` function, a random secret is generated and distributed into shares. Both the secret and the shares are returned.
Package crypto includes common cryptography helpers. They typically make usie of the stdlib functions more ergonomic, and do not seek to invent new methods for encrypting or decrypting data. This package is inspired from https://github.com/blend/go-sdk with the following changes: - Use of github.com/pkg/errors to wrap errors