Package gomarkdoc formats documentation for one or more packages as markdown for usage outside of the main https://pkg.go.dev site. It supports custom templates for tweaking representation of documentation at fine-grained levels, exporting both exported and unexported symbols, and custom formatters for different backends. If you want to use this package as a command-line tool, you can install the command by running the following on go 1.16+: For older versions of go, you can install using the following method instead: The command line tool supports configuration for all of the features of the importable package: The gomarkdoc command processes each of the provided packages, generating documentation for the package in markdown format and writing it to console. For example, if you have a package in your current directory and want to send it to a documentation markdown file, you might do something like this: The gomarkdoc tool supports generating documentation for both local packages and remote ones. To specify a local package, start the name of the package with a period (.) or specify an absolute path on the filesystem. All other package signifiers are assumed to be remote packages. You may specify both local and remote packages in the same command invocation as separate arguments. If you have a project with many packages but you want to skip documentation generation for some, you can use the --exclude-dirs option. This will remove any matching directories from the list of directories to process. Excluded directories are specified using the same pathing syntax as the packages to process. Multiple expressions may be comma-separated or specified by using the --exclude-dirs flag multiple times. For example, in this repository we generate documentation for the entire project while excluding our test packages by running: By default, the documentation generated by the gomarkdoc command is sent to standard output, where it can be redirected to a file. This can be useful if you want to perform additional modifications to the documentation or send it somewhere other than a file. However, keep in mind that there are some inconsistencies in how various shells/platforms handle redirected command output (for example, Powershell encodes in UTF-16, not UTF-8). As a result, the --output option described below is recommended for most use cases. If you want to redirect output for each processed package to a file, you can provide the --output/-o option, which accepts a template specifying how to generate the path of the output file. A common usage of this option is when generating README documentation for a package with subpackages (which are supported via the ... signifier as in other parts of the golang toolchain). In addition, this option provides consistent behavior across platforms and shells: You can see all of the data available to the output template in the PackageSpec struct in the github.com/princjef/gomarkdoc/cmd/gomarkdoc package. The documentation information that is output is formatted using a series of text templates for the various components of the overall documentation which get generated. Higher level templates contain lower level templates, but any template may be replaced with an override template using the --template/-t option. The full list of templates that may be overridden are: file: generates documentation for a file containing one or more packages, depending on how the tool is configured. This is the root template for documentation generation. package: generates documentation for an entire package. type: generates documentation for a single type declaration, as well as any related functions/methods. func: generates documentation for a single function or method. It may be referenced from within a type, or directly in the package, depending on nesting. value: generates documentation for a single variable or constant declaration block within a package. index: generates an index of symbols within a package, similar to what is seen for godoc.org. The index links to types, funcs, variables, and constants generated by other templates, so it may need to be overridden as well if any of those templates are changed in a material way. example: generates documentation for a single example for a package or one of its symbols. The example is generated alongside whichever symbol it represents, based on the standard naming conventions outlined in https://blog.golang.org/examples#TOC_4. doc: generates the freeform documentation block for any of the above structures that can contain a documentation section. import: generates the import code used to pull in a package. Overriding with the --template-file option uses a key-value pair mapping a template name to the file containing the contents of the override template to use. Specified template files must exist: As with the godoc tool itself, only exported symbols will be shown in documentation. This can be expanded to include all symbols in a package by adding the --include-unexported/-u flag. If you want to blend the documentation generated by gomarkdoc with your own hand-written markdown, you can use the --embed/-e flag to change the gomarkdoc tool into an append/embed mode. When documentation is generated, gomarkdoc looks for a file in the location where the documentation is to be written and embeds the documentation if present. Otherwise, the documentation is appended to the end of the file. When running with embed mode enabled, gomarkdoc will look for either this single comment: Or the following pair of comments (in which case all content in between is replaced): If you would like to include files that are part of a build tag, you can specify build tags with the --tags flag. Tags are also supported through GOFLAGS, though command line and configuration file definitions override tags specified through GOFLAGS. You can also run gomarkdoc in a verification mode with the --check/-c flag. This is particularly useful for continuous integration when you want to make sure that a commit correctly updated the generated documentation. This flag is only supported when the --output/-o flag is specified, as the file provided there is what the tool is checking: If you're experiencing difficulty with gomarkdoc or just want to get more information about how it's executing underneath, you can add -v to show more logs. This can be chained a second time to show even more verbose logs: Some features of gomarkdoc rely on being able to detect information from the git repository containing the project. Since individual local git repositories may be configured differently from person to person, you may want to manually specify the information for the repository to remove any inconsistencies. This can be achieved with the --repository.url, --repository.default-branch and --repository.path options. For example, this repository would be configured with: If you want to reuse configuration options across multiple invocations, you can specify a file in the folder where you invoke gomarkdoc containing configuration information that you would otherwise provide on the command line. This file may be a JSON, TOML, YAML, HCL, env, or Java properties file, but the name is expected to start with .gomarkdoc (e.g. .gomarkdoc.yml). All configuration options are available with the camel-cased form of their long name (e.g. --include-unexported becomes includeUnexported). Template overrides are specified as a map, rather than a set of key-value pairs separated by =. Options provided on the command line override those provided in the configuration file if an option is present in both. While most users will find the command line utility sufficient for their needs, this package may also be used programmatically by installing it directly, rather than its command subpackage. The programmatic usage provides more flexibility when selecting what packages to work with and what components to generate documentation for. A common usage will look something like this: This project uses itself to generate the README files in github.com/princjef/gomarkdoc and its subdirectories. To see the commands that are run to generate documentation for this repository, take a look at the Doc() and DocVerify() functions in magefile.go and the .gomarkdoc.yml file in the root of this repository. To run these commands in your own project, simply replace `go run ./cmd/gomarkdoc` with `gomarkdoc`. Know of another project that is using gomarkdoc? Open an issue with a description of the project and link to the repository and it might be featured here!
Package sign provides utilities to generate signed URLs for Amazon CloudFront. More information about signed URLs and their structure can be found at: http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-creating-signed-url-canned-policy.html To sign a URL create a URLSigner with your private key and credential pair key ID. Once you have a URLSigner instance you can call URLSigner.Sign or URLSigner.SignWithPolicy to sign the URLs. Example:
go-enum is a utility for generating a more functional version of enumerations in go. The generator looks for the exact string `ENUM(` and will continue to store comma separated values until it finds a `)`. Those values can be on one line, or separate lines; they can include `_` in order to skip a value in the enum that won't be an allowed value. Installation Usage: Sample File Command to generate your enum
Pact Go enables consumer driven contract testing, providing a mock service and DSL for the consumer project, and interaction playback and verification for the service provider project. Consumer side Pact testing is an isolated test that ensures a given component is able to collaborate with another (remote) component. Pact will automatically start a Mock server in the background that will act as the collaborators' test double. This implies that any interactions expected on the Mock server will be validated, meaning a test will fail if all interactions were not completed, or if unexpected interactions were found: A typical consumer-side test would look something like this: If this test completed successfully, a Pact file should have been written to ./pacts/my_consumer-my_provider.json containing all of the interactions expected to occur between the Consumer and Provider. In addition to verbatim value matching, you have 3 useful matching functions in the `dsl` package that can increase expressiveness and reduce brittle test cases. Here is a complex example that shows how all 3 terms can be used together: This example will result in a response body from the mock server that looks like: See the examples in the dsl package and the matcher tests (https://github.com/pact-foundation/pact-go/v2/blob/master/dsl/matcher_test.go) for more matching examples. NOTE: You will need to use valid Ruby regular expressions (http://ruby-doc.org/core-2.1.5/Regexp.html) and double escape backslashes. Read more about flexible matching (https://github.com/pact-foundation/pact-ruby/wiki/Regular-expressions-and-type-matching-with-Pact. Provider side Pact testing, involves verifying that the contract - the Pact file - can be satisfied by the Provider. A typical Provider side test would like something like: The `VerifyProvider` will handle all verifications, treating them as subtests and giving you granular test reporting. If you don't like this behaviour, you may call `VerifyProviderRaw` directly and handle the errors manually. Note that `PactURLs` may be a list of local pact files or remote based urls (possibly from a Pact Broker - http://docs.pact.io/documentation/sharings_pacts.html). Pact reads the specified pact files (from remote or local sources) and replays the interactions against a running Provider. If all of the interactions are met we can say that both sides of the contract are satisfied and the test passes. When validating a Provider, you have 3 options to provide the Pact files: 1. Use "PactURLs" to specify the exact set of pacts to be replayed: Options 2 and 3 are particularly useful when you want to validate that your Provider is able to meet the contracts of what's in Production and also the latest in development. See this [article](http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) for more on this strategy. Each interaction in a pact should be verified in isolation, with no context maintained from the previous interactions. So how do you test a request that requires data to exist on the provider? Provider states are how you achieve this using Pact. Provider states also allow the consumer to make the same request with different expected responses (e.g. different response codes, or the same resource with a different subset of data). States are configured on the consumer side when you issue a dsl.Given() clause with a corresponding request/response pair. Configuring the provider is a little more involved, and (currently) requires running an API endpoint to configure any [provider states](http://docs.pact.io/documentation/provider_states.html) during the verification process. The option you must provide to the dsl.VerifyRequest is: An example route using the standard Go http package might look like this: See the examples or read more at http://docs.pact.io/documentation/provider_states.html. See the Pact Broker (http://docs.pact.io/documentation/sharings_pacts.html) documentation for more details on the Broker and this article (http://rea.tech/enter-the-pact-matrix-or-how-to-decouple-the-release-cycles-of-your-microservices/) on how to make it work for you. Publishing using Go code: Publishing from the CLI: Use a cURL request like the following to PUT the pact to the right location, specifying your consumer name, provider name and consumer version. The following flags are required to use basic authentication when publishing or retrieving Pact files to/from a Pact Broker: Pact Go uses a simple log utility (logutils - https://github.com/hashicorp/logutils) to filter log messages. The CLI already contains flags to manage this, should you want to control log level in your tests, you can set it like so:
Package gopkgs is a utility to get list of golang packages.
Package gopkgs is a utility to get list of golang packages.
Package filter contains utility functions for filtering slices through the distributed application of a filter function. The package is an experiment to see how easy it is to write such things in Go. It is easy, but for loops are just as easy and more efficient. You should not use this package.
Package fwd provides a buffered reader and writer. Each has methods that help improve the encoding/decoding performance of some binary protocols. The Writer and Reader type provide similar functionality to their counterparts in bufio, plus a few extra utility methods that simplify read-ahead and write-ahead. I wrote this package to improve serialization performance for http://github.com/tinylib/msgp, where it provided about a 2x speedup over `bufio` for certain workloads. However, care must be taken to understand the semantics of the extra methods provided by this package, as they allow the user to access and manipulate the buffer memory directly. The extra methods for Reader are Reader.Peek, Reader.Skip and Reader.Next. (*fwd.Reader).Peek, unlike (*bufio.Reader).Peek, will re-allocate the read buffer in order to accommodate arbitrarily large read-ahead. (*fwd.Reader).Skip skips the next 'n' bytes in the stream, and uses the io.Seeker interface if the underlying stream implements it. (*fwd.Reader).Next returns a slice pointing to the next 'n' bytes in the read buffer (like Reader.Peek), but also increments the read position. This allows users to process streams in arbitrary block sizes without having to manage appropriately-sized slices. Additionally, obviating the need to copy the data from the buffer to another location in memory can improve performance dramatically in CPU-bound applications. Writer only has one extra method, which is (*fwd.Writer).Next, which returns a slice pointing to the next 'n' bytes of the writer, and increments the write position by the length of the returned slice. This allows users to write directly to the end of the buffer.
Package fpdf implements a PDF document generator with high level support for text, drawing and images. - UTF-8 support - Choice of measurement unit, page format and margins - Page header and footer management - Automatic page breaks, line breaks, and text justification - Inclusion of JPEG, PNG, GIF, TIFF and basic path-only SVG images - Colors, gradients and alpha channel transparency - Outline bookmarks - Internal and external links - TrueType, Type1 and encoding support - Page compression - Lines, Bézier curves, arcs, and ellipses - Rotation, scaling, skewing, translation, and mirroring - Clipping - Document protection - Layers - Templates - Barcodes - Charting facility - Import PDFs as templates go-pdf/fpdf has no dependencies other than the Go standard library. All tests pass on Linux, Mac and Windows platforms. go-pdf/fpdf supports UTF-8 TrueType fonts and “right-to-left” languages. Note that Chinese, Japanese, and Korean characters may not be included in many general purpose fonts. For these languages, a specialized font (for example, NotoSansSC for simplified Chinese) can be used. Also, support is provided to automatically translate UTF-8 runes to code page encodings for languages that have fewer than 256 glyphs. To install the package on your system, run Later, to receive updates, run The following Go code generates a simple PDF file. See the functions in the fpdf_test.go file (shown as examples in this documentation) for more advanced PDF examples. If an error occurs in an Fpdf method, an internal error field is set. After this occurs, Fpdf method calls typically return without performing any operations and the error state is retained. This error management scheme facilitates PDF generation since individual method calls do not need to be examined for failure; it is generally sufficient to wait until after Output() is called. For the same reason, if an error occurs in the calling application during PDF generation, it may be desirable for the application to transfer the error to the Fpdf instance by calling the SetError() method or the SetErrorf() method. At any time during the life cycle of the Fpdf instance, the error state can be determined with a call to Ok() or Err(). The error itself can be retrieved with a call to Error(). This package is a relatively straightforward translation from the original FPDF library written in PHP (despite the caveat in the introduction to Effective Go). The API names have been retained even though the Go idiom would suggest otherwise (for example, pdf.GetX() is used rather than simply pdf.X()). The similarity of the two libraries makes the original FPDF website a good source of information. It includes a forum and FAQ. However, some internal changes have been made. Page content is built up using buffers (of type bytes.Buffer) rather than repeated string concatenation. Errors are handled as explained above rather than panicking. Output is generated through an interface of type io.Writer or io.WriteCloser. A number of the original PHP methods behave differently based on the type of the arguments that are passed to them; in these cases additional methods have been exported to provide similar functionality. Font definition files are produced in JSON rather than PHP. A side effect of running go test ./... is the production of a number of example PDFs. These can be found in the go-pdf/fpdf/pdf directory after the tests complete. Please note that these examples run in the context of a test. In order run an example as a standalone application, you’ll need to examine fpdf_test.go for some helper routines, for example exampleFilename() and summary(). Example PDFs can be compared with reference copies in order to verify that they have been generated as expected. This comparison will be performed if a PDF with the same name as the example PDF is placed in the go-pdf/fpdf/pdf/reference directory and if the third argument to ComparePDFFiles() in internal/example/example.go is true. (By default it is false.) The routine that summarizes an example will look for this file and, if found, will call ComparePDFFiles() to check the example PDF for equality with its reference PDF. If differences exist between the two files they will be printed to standard output and the test will fail. If the reference file is missing, the comparison is considered to succeed. In order to successfully compare two PDFs, the placement of internal resources must be consistent and the internal creation timestamps must be the same. To do this, the methods SetCatalogSort() and SetCreationDate() need to be called for both files. This is done automatically for all examples. Nothing special is required to use the standard PDF fonts (courier, helvetica, times, zapfdingbats) in your documents other than calling SetFont(). You should use AddUTF8Font() or AddUTF8FontFromBytes() to add a TrueType UTF-8 encoded font. Use RTL() and LTR() methods switch between “right-to-left” and “left-to-right” mode. In order to use a different non-UTF-8 TrueType or Type1 font, you will need to generate a font definition file and, if the font will be embedded into PDFs, a compressed version of the font file. This is done by calling the MakeFont function or using the included makefont command line utility. To create the utility, cd into the makefont subdirectory and run “go build”. This will produce a standalone executable named makefont. Select the appropriate encoding file from the font subdirectory and run the command as in the following example. In your PDF generation code, call AddFont() to load the font and, as with the standard fonts, SetFont() to begin using it. Most examples, including the package example, demonstrate this method. Good sources of free, open-source fonts include Google Fonts and DejaVu Fonts. The draw2d package is a two dimensional vector graphics library that can generate output in different forms. It uses gofpdf for its document production mode. gofpdf is a global community effort and you are invited to make it even better. If you have implemented a new feature or corrected a problem, please consider contributing your change to the project. A contribution that does not directly pertain to the core functionality of gofpdf should be placed in its own directory directly beneath the contrib directory. Here are guidelines for making submissions. Your change should - be compatible with the MIT License - be properly documented - be formatted with go fmt - include an example in fpdf_test.go if appropriate - conform to the standards of golint and go vet, that is, golint . and go vet . should not generate any warnings - not diminish test coverage Pull requests are the preferred means of accepting your changes. gofpdf is released under the MIT License. It is copyrighted by Kurt Jung and the contributors acknowledged below. This package’s code and documentation are closely derived from the FPDF library created by Olivier Plathey, and a number of font and image resources are copied directly from it. Bruno Michel has provided valuable assistance with the code. Drawing support is adapted from the FPDF geometric figures script by David Hernández Sanz. Transparency support is adapted from the FPDF transparency script by Martin Hall-May. Support for gradients and clipping is adapted from FPDF scripts by Andreas Würmser. Support for outline bookmarks is adapted from Olivier Plathey by Manuel Cornes. Layer support is adapted from Olivier Plathey. Support for transformations is adapted from the FPDF transformation script by Moritz Wagner and Andreas Würmser. PDF protection is adapted from the work of Klemen Vodopivec for the FPDF product. Lawrence Kesteloot provided code to allow an image’s extent to be determined prior to placement. Support for vertical alignment within a cell was provided by Stefan Schroeder. Ivan Daniluk generalized the font and image loading code to use the Reader interface while maintaining backward compatibility. Anthony Starks provided code for the Polygon function. Robert Lillack provided the Beziergon function and corrected some naming issues with the internal curve function. Claudio Felber provided implementations for dashed line drawing and generalized font loading. Stani Michiels provided support for multi-segment path drawing with smooth line joins, line join styles, enhanced fill modes, and has helped greatly with package presentation and tests. Templating is adapted by Marcus Downing from the FPDF_Tpl library created by Jan Slabon and Setasign. Jelmer Snoeck contributed packages that generate a variety of barcodes and help with registering images on the web. Jelmer Snoek and Guillermo Pascual augmented the basic HTML functionality with aligned text. Kent Quirk implemented backwards-compatible support for reading DPI from images that support it, and for setting DPI manually and then having it properly taken into account when calculating image size. Paulo Coutinho provided support for static embedded fonts. Dan Meyers added support for embedded JavaScript. David Fish added a generic alias-replacement function to enable, among other things, table of contents functionality. Andy Bakun identified and corrected a problem in which the internal catalogs were not sorted stably. Paul Montag added encoding and decoding functionality for templates, including images that are embedded in templates; this allows templates to be stored independently of gofpdf. Paul also added support for page boxes used in printing PDF documents. Wojciech Matusiak added supported for word spacing. Artem Korotkiy added support of UTF-8 fonts. Dave Barnes added support for imported objects and templates. Brigham Thompson added support for rounded rectangles. Joe Westcott added underline functionality and optimized image storage. Benoit KUGLER contributed support for rectangles with corners of unequal radius, modification times, and for file attachments and annotations. - Remove all legacy code page font support; use UTF-8 exclusively - Improve test coverage as reported by the coverage tool. Example demonstrates the generation of a simple PDF document. Note that since only core fonts are used (in this case Arial, a synonym for Helvetica), an empty string can be specified for the font directory in the call to New(). Note also that the example.Filename() and example.SummaryCompare() functions belong to a separate, internal package and are not part of the gofpdf library. If an error occurs at some point during the construction of the document, subsequent method calls exit immediately and the error is finally retrieved with the output call where it can be handled by the application.
Package eventstreamtesting implements helper utilities for event stream protocol testing.
Package yacspin provides Yet Another CLi Spinner for Go, taking inspiration (and some utility code) from the https://github.com/briandowns/spinner project. Specifically this project borrows the default character sets, and color mappings to github.com/fatih/color colors, from that project. This spinner should support all major operating systems, and is tested against Linux, MacOS, and Windows. This spinner also supports an alternate mode of operation when the TERM environment variable is set to "dumb". This is discovered automatically when constructing the spinner. Within the yacspin package there are some default spinners stored in the yacspin.CharSets variable, and you can also provide your own. There is also a list of known colors in the yacspin.ValidColors variable, if you'd like to see what's supported. If you've used github.com/fatih/color before, they should look familiar. Check out the Config struct to see all of the possible configuration options supported by the Spinner.
Package mathutil provides utilities supplementing the standard 'math' and 'math/rand' packages. 2018-10-21 Added BinaryLog 2018-04-25: New functions for determinig Max/Min of nullable values. Ex: 2017-10-14: New variadic functions for Max/Min. Ex: 2016-10-10: New functions QuadPolyDiscriminant and QuadPolyFactors. 2013-12-13: The following functions have been REMOVED 2013-05-13: The following functions are now DEPRECATED These functions will be REMOVED with Go release 1.1+1. 2013-01-21: The following functions have been REMOVED They are now replaced by untyped constants Additionally one more untyped constant was added This change breaks any existing code depending on the above removed functions. They should have not been published in the first place, that was unfortunate. Instead, defining such architecture and/or implementation specific integer limits and bit widths as untyped constants improves performance and allows for static dead code elimination if it depends on these values. Thanks to minux for pointing it out in the mail list (https://groups.google.com/d/msg/golang-nuts/tlPpLW6aJw8/NT3mpToH-a4J). 2012-12-12: The following functions will be DEPRECATED with Go release 1.0.3+1 and REMOVED with Go release 1.0.3+2, b/c of http://code.google.com/p/go/source/detail?r=954a79ee3ea8
Package timezone provides utility for timezone.
Golex is a lex/flex like (not fully POSIX lex compatible) utility. It renders .l formated data (http://flex.sourceforge.net/manual/Format.html#Format) to Go source code. The .l data can come from a file named in a command line argument. If no non-opt args are given, golex reads stdin. Options: To get the latest golex version: Please see http://godoc.org/github.com/cznic/golex/lex. 2014-11-18: Golex now supports %yym - a hook which can be used to mark an accepting state. Consider for example this .l file: Execution and output: 2014-11-15: Golex's output is now gofmt'ed, if possible. Missing/differing functionality of the current renderer (compared to flex): Further limitations on the .l source are listed in the cznic/lex package godocs. A simple golex program example (make example1 && ./example1):
Package strutil provides string metrics for calculating string similarity as well as other string utility functions. Documentation for all the metrics can be found at https://pkg.go.dev/github.com/adrg/strutil/metrics. Included string metrics:
Package dyno is a utility to work with dynamic objects at ease. Primary goal is to easily handle dynamic objects and arrays (and a mixture of these) that are the result of unmarshaling a JSON or YAML text into an interface{} for example. When unmarshaling into interface{}, libraries usually choose either map[string]interface{} or map[interface{}]interface{} to represent objects, and []interface{} to represent arrays. Package dyno supports a mixture of these in any depth and combination. When operating on a dynamic object, you designate a value you're interested in by specifying a path. A path is a navigation; it is a series of map keys and int slice indices that tells how to get to the value. Should you need to marshal a dynamic object to JSON which contains maps with interface{} key type (which is not supported by encoding/json), you may use the ConvertMapI2MapS converter function. The implementation does not use reflection at all, so performance is rather good. Let's see a simple example editing a JSON text to mask out a password. This is a simplified version of the Example_jsonEdit example function: Output will be: Example shows a few of dyno's features, such as getting, setting and appending values to / from a dynamic object. Example_jsonEdit shows a simple example how JSON can be edited. The password placed in the JSON is masked out.
Package fieldmask_utils provides utility functions for copying data from structs using a field mask.
Package gotool contains utility functions used to implement the standard "cmd/go" tool, provided as a convenience to developers who want to write tools with similar semantics.
Package ensure provides utilities for testing to ensure the given conditions are met and Fatal if they aren't satisified. The various functions here show a useful error message automatically including identifying source location. They additionally support arbitary arguments which will be printed using the spew library.
Package utils provides utilities for the Cortex exporter. Deprecated: This package is no longer supported.
Package model provides robust and easy-to-use model mapper and utility methods for Go. These typical methods increase productivity and make Go development more fun :)
Package watchdog runs a singleton memory watchdog in the process, which watches memory utilization and forces Go GC in accordance with a user-defined policy. There three kinds of watchdogs: The watchdog's behaviour is controlled by the policy, a pluggable function that determines when to trigger GC based on the current utilization. This library ships with two policies: You can easily write a custom policy tailored to the allocation patterns of your program. The recommended way to set up the watchdog is as follows, in descending order of precedence. This logic assumes that the library supports setting a heap limit through an environment variable (e.g. MYAPP_HEAP_MAX) or config key.
Package mount defines an interface to mounting filesystems.
This is the official Go SDK for Oracle Cloud Infrastructure Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#installing for installation instructions. Refer to https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring for configuration instructions. The following example shows how to get started with the SDK. The example belows creates an identityClient struct with the default configuration. It then utilizes the identityClient to list availability domains and prints them out to stdout More examples can be found in the SDK Github repo: https://github.com/oracle/oci-go-sdk/tree/master/example Optional fields are represented with the `mandatory:"false"` tag on input structs. The SDK will omit all optional fields that are nil when making requests. In the case of enum-type fields, the SDK will omit fields whose value is an empty string. The SDK uses pointers for primitive types in many input structs. To aid in the construction of such structs, the SDK provides functions that return a pointer for a given value. For example: The SDK exposes functionality that allows the user to customize any http request before is sent to the service. You can do so by setting the `Interceptor` field in any of the `Client` structs. For example: The Interceptor closure gets called before the signing process, thus any changes done to the request will be properly signed and submitted to the service. The SDK exposes a stand-alone signer that can be used to signing custom requests. Related code can be found here: https://github.com/oracle/oci-go-sdk/blob/master/common/http_signer.go. The example below shows how to create a default signer. The signer also allows more granular control on the headers used for signing. For example: You can combine a custom signer with the exposed clients in the SDK. This allows you to add custom signed headers to the request. Following is an example: Bear in mind that some services have a white list of headers that it expects to be signed. Therefore, adding an arbitrary header can result in authentications errors. To see a runnable example, see https://github.com/oracle/oci-go-sdk/blob/master/example/example_identity_test.go For more information on the signing algorithm refer to: https://docs.cloud.oracle.com/Content/API/Concepts/signingrequests.htm Some operations accept or return polymorphic JSON objects. The SDK models such objects as interfaces. Further the SDK provides structs that implement such interfaces. Thus, for all operations that expect interfaces as input, pass the struct in the SDK that satisfies such interface. For example: In the case of a polymorphic response you can type assert the interface to the expected type. For example: An example of polymorphic JSON request handling can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_test.go#L63 When calling a list operation, the operation will retrieve a page of results. To retrieve more data, call the list operation again, passing in the value of the most recent response's OpcNextPage as the value of Page in the next list operation call. When there is no more data the OpcNextPage field will be nil. An example of pagination using this logic can be found here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_core_pagination_test.go The SDK has a built-in logging mechanism used internally. The internal logging logic is used to record the raw http requests, responses and potential errors when (un)marshalling request and responses. Built-in logging in the SDK is controlled via the environment variable "OCI_GO_SDK_DEBUG" and its contents. The below are possible values for the "OCI_GO_SDK_DEBUG" variable 1. "info" or "i" enables all info logging messages 2. "debug" or "d" enables all debug and info logging messages 3. "verbose" or "v" or "1" enables all verbose, debug and info logging messages 4. "null" turns all logging messages off. If the value of the environment variable does not match any of the above then default logging level is "info". If the environment variable is not present then no logging messages are emitted. The default destination for logging is Stderr and if you want to output log to a file you can set via environment variable "OCI_GO_SDK_LOG_OUTPUT_MODE". The below are possible values 1. "file" or "f" enables all logging output saved to file 2. "combine" or "c" enables all logging output to both stderr and file You can also customize the log file location and name via "OCI_GO_SDK_LOG_FILE" environment variable, the value should be the path to a specific file If this environment variable is not present, the default location will be the project root path Sometimes you may need to wait until an attribute of a resource, such as an instance or a VCN, reaches a certain state. An example of this would be launching an instance and then waiting for the instance to become available, or waiting until a subnet in a VCN has been terminated. You might also want to retry the same operation again if there's network issue etc... This can be accomplished by using the RequestMetadata.RetryPolicy(request level configuration), alternatively, global(all services) or client level RetryPolicy configration is also possible. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_retry_test.go If you are trying to make a PUT/POST API call with binary request body, please make sure the binary request body is resettable, which means the request body should inherit Seeker interface. The Retry behavior Precedence (Highest to lowest) is defined as below:- The OCI Go SDK defines a default retry policy that retries on the errors suitable for retries (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm), for a recommended period of time (up to 7 attempts spread out over at most approximately 1.5 minutes). The default retry policy is defined by : Default Retry-able Errors Below is the list of default retry-able errors for which retry attempts should be made. The following errors should be retried (with backoff). HTTP Code Customer-facing Error Code Apart from the above errors, retries should also be attempted in the following Client Side errors : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) The above errors can be avoided through retrying and hence, are classified as the default retry-able errors. Additionally, retries should also be made for Circuit Breaker exceptions (Exceptions raised by Circuit Breaker in an open state) Default Termination Strategy The termination strategy defines when SDKs should stop attempting to retry. In other words, it's the deadline for retries. The OCI SDKs should stop retrying the operation after 7 retry attempts. This means the SDKs will have retried for ~98 seconds or ~1.5 minutes have elapsed due to total delays. SDKs will make a total of 8 attempts. (1 initial request + 7 retries) Default Delay Strategy Default Delay Strategy - The delay strategy defines the amount of time to wait between each of the retry attempts. The default delay strategy chosen for the SDK – Exponential backoff with jitter, using: 1. The base time to use in retry calculations will be 1 second 2. An exponent of 2. When calculating the next retry time, the SDK will raise this to the power of the number of attempts 3. A maximum wait time between calls of 30 seconds (Capped) 4. Added jitter value between 0-1000 milliseconds to spread out the requests Configure and use default retry policy You can set this retry policy for a single request: or for all requests made by a client: or for all requests made by all clients: or setting default retry via environment varaible, which is a global switch for all services: Some services enable retry for operations by default, this can be overridden using any alternatives mentioned above. To know which service operations have retries enabled by default, look at the operation's description in the SDK - it will say whether that it has retries enabled by default Some resources may have to be replicated across regions and are only eventually consistent. That means the request to create, update, or delete the resource succeeded, but the resource is not available everywhere immediately. Creating, updating, or deleting any resource in the Identity service is affected by eventual consistency, and doing so may cause other operations in other services to fail until the Identity resource has been replicated. For example, the request to CreateTag in the Identity service in the home region succeeds, but immediately using that created tag in another region in a request to LaunchInstance in the Compute service may fail. If you are creating, updating, or deleting resources in the Identity service, we recommend using an eventually consistent retry policy for any service you access. The default retry policy already deals with eventual consistency. Example: This retry policy will use a different strategy if an eventually consistent change was made in the recent past (called the "eventually consistent window", currently defined to be 4 minutes after the eventually consistent change). This special retry policy for eventual consistency will: 1. make up to 9 attempts (including the initial attempt); if an attempt is successful, no more attempts will be made 2. retry at most until (a) approximately the end of the eventually consistent window or (b) the end of the default retry period of about 1.5 minutes, whichever is farther in the future; if an attempt is successful, no more attempts will be made, and the OCI Go SDK will not wait any longer 3. retry on the error codes 400-RelatedResourceNotAuthorizedOrNotFound, 404-NotAuthorizedOrNotFound, and 409-NotAuthorizedOrResourceAlreadyExists, for which the default retry policy does not retry, in addition to the errors the default retry policy retries on (see https://docs.oracle.com/en-us/iaas/Content/API/References/apierrors.htm) If there were no eventually consistent actions within the recent past, then this special retry strategy is not used. If you want a retry policy that does not handle eventual consistency in a special way, for example because you retry on all error responses, you can use DefaultRetryPolicyWithoutEventualConsistency or NewRetryPolicyWithOptions with the common.ReplaceWithValuesFromRetryPolicy(common.DefaultRetryPolicyWithoutEventualConsistency()) option: The NewRetryPolicy function also creates a retry policy without eventual consistency. Circuit Breaker can prevent an application repeatedly trying to execute an operation that is likely to fail, allowing it to continue without waiting for the fault to be rectified or wasting CPU cycles, of course, it also enables an application to detect whether the fault has been resolved. If the problem appears to have been rectified, the application can attempt to invoke the operation. Go SDK intergrates sony/gobreaker solution, wraps in a circuit breaker object, which monitors for failures. Once the failures reach a certain threshold, the circuit breaker trips, and all further calls to the circuit breaker return with an error, this also saves the service from being overwhelmed with network calls in case of an outage. Circuit Breaker Configuration Definitions 1. Failure Rate Threshold - The state of the CircuitBreaker changes from CLOSED to OPEN when the failure rate is equal or greater than a configurable threshold. For example when more than 50% of the recorded calls have failed. 2. Reset Timeout - The timeout after which an open circuit breaker will attempt a request if a request is made 3. Failure Exceptions - The list of Exceptions that will be regarded as failures for the circuit. 4. Minimum number of calls/ Volume threshold - Configures the minimum number of calls which are required (per sliding window period) before the CircuitBreaker can calculate the error rate. 1. Failure Rate Threshold - 80% - This means when 80% of the requests calculated for a time window of 120 seconds have failed then the circuit will transition from closed to open. 2. Minimum number of calls/ Volume threshold - A value of 10, for the above defined time window of 120 seconds. 3. Reset Timeout - 30 seconds to wait before setting the breaker to halfOpen state, and trying the action again. 4. Failure Exceptions - The failures for the circuit will only be recorded for the retryable/transient exceptions. This means only the following exceptions will be regarded as failure for the circuit. HTTP Code Customer-facing Error Code Apart from the above, the following client side exceptions will also be treated as a failure for the circuit : 1. HTTP Connection timeout 2. Request Connection Errors 3. Request Exceptions 4. Other timeouts (like Read Timeout) Go SDK enable circuit breaker with default configuration for most of the service clients, if you don't want to enable the solution, can disable the functionality before your application running Go SDK also supports customize Circuit Breaker with specified configurations. You can find the examples here: https://github.com/oracle/oci-go-sdk/blob/master/example/example_circuitbreaker_test.go To know which service clients have circuit breakers enabled, look at the service client's description in the SDK - it will say whether that it has circuit breakers enabled by default The GO SDK uses the net/http package to make calls to OCI services. If your environment requires you to use a proxy server for outgoing HTTP requests then you can set this up in the following ways: 1. Configuring environment variable as described here https://golang.org/pkg/net/http/#ProxyFromEnvironment 2. Modifying the underlying Transport struct for a service client In order to modify the underlying Transport struct in HttpClient, you can do something similar to (sample code for audit service client): The Object Storage service supports multipart uploads to make large object uploads easier by splitting the large object into parts. The Go SDK supports raw multipart upload operations for advanced use cases, as well as a higher level upload class that uses the multipart upload APIs. For links to the APIs used for multipart upload operations, see Managing Multipart Uploads (https://docs.cloud.oracle.com/iaas/Content/Object/Tasks/usingmultipartuploads.htm). Higher level multipart uploads are implemented using the UploadManager, which will: split a large object into parts for you, upload the parts in parallel, and then recombine and commit the parts as a single object in storage. This code sample shows how to use the UploadManager to automatically split an object into parts for upload to simplify interaction with the Object Storage service: https://github.com/oracle/oci-go-sdk/blob/master/example/example_objectstorage_test.go Some response fields are enum-typed. In the future, individual services may return values not covered by existing enums for that field. To address this possibility, every enum-type response field is a modeled as a type that supports any string. Thus if a service returns a value that is not recognized by your version of the SDK, then the response field will be set to this value. When individual services return a polymorphic JSON response not available as a concrete struct, the SDK will return an implementation that only satisfies the interface modeling the polymorphic JSON response. If you are using a version of the SDK released prior to the announcement of a new region, you may need to use a workaround to reach it, depending on whether the region is in the oraclecloud.com realm. A region is a localized geographic area. For more information on regions and how to identify them, see Regions and Availability Domains(https://docs.cloud.oracle.com/iaas/Content/General/Concepts/regions.htm). A realm is a set of regions that share entities. You can identify your realm by looking at the domain name at the end of the network address. For example, the realm for xyz.abc.123.oraclecloud.com is oraclecloud.com. oraclecloud.com Realm: For regions in the oraclecloud.com realm, even if common.Region does not contain the new region, the forward compatibility of the SDK can automatically handle it. You can pass new region names just as you would pass ones that are already defined. For more information on passing region names in the configuration, see Configuring (https://github.com/oracle/oci-go-sdk/blob/master/README.md#configuring). For details on common.Region, see (https://github.com/oracle/oci-go-sdk/blob/master/common/common.go). Other Realms: For regions in realms other than oraclecloud.com, you can use the following workarounds to reach new regions with earlier versions of the SDK. NOTE: Be sure to supply the appropriate endpoints for your region. You can overwrite the target host with client.Host: If you are authenticating via instance principals, you can set the authentication endpoint in an environment variable: Got a fix for a bug, or a new feature you'd like to contribute? The SDK is open source and accepting pull requests on GitHub https://github.com/oracle/oci-go-sdk Licensing information available at: https://github.com/oracle/oci-go-sdk/blob/master/LICENSE.txt To be notified when a new version of the Go SDK is released, subscribe to the following feed: https://github.com/oracle/oci-go-sdk/releases.atom Please refer to this link: https://github.com/oracle/oci-go-sdk#help
Package gulu implements some common utilities.
Package trace implements utility functions for capturing debugging information about file and line in error reports and logs.
Package meta contains the generic metadata APIs for use by GitOps Toolkit components. It is intended only to help adhere to Kubernetes API conventions, utility integrations, and Flux project considered best practices. It may therefore be suitable for usage by Kubernetes resources with no relationship to the GitOps Toolkit. +kubebuilder:object:generate=true
Package iplib provides enhanced tools for working with IP networks and addresses. These tools are built upon and extend the generic functionality found in the Go "net" package. The main library comes in two parts: a series of utilities for working with net.IP (sort, increment, decrement, delta, compare, convert to binary or hex- string, convert between net.IP and integer) and an enhancement of net.IPNet called iplib.Net that can calculate the first and last IPs of a block as well as enumerating the block into []net.IP, incrementing and decrementing within the boundaries of the block and creating sub- or super-nets of it. For most features iplib exposes a v4 and a v6 variant to handle each network properly, but in all cases there is a generic function that handles any IP and routes between them. One caveat to this is those functions that require or return an integer value representing the address, in these cases the IPv4 variants take an int32 as input while the IPv6 functions require a *big.Int in order to work with the 128bits of address. For managing the complexity of IPv6 address-spaces, this library adds a new mask, called a Hostmask, as an optional constraint on iplib.Net6 networks, please see the type-documentation for more information on using it. For functions where it is possible to exceed the address-space the rule is that underflows return the version-appropriate all-zeroes address while overflows return the all-ones. There are also two submodules under iplib: the iplib/iid module contains functions for generating RFC 7217-compliant IPv6 Interface ID addresses, and iplib/iana imports the IANA IP Special Registries and exposes functions for comparing IP addresses against those registries to determine if the IP is part of a special reservation (for example RFC 1918 private networks or the RFC 3849 documentation network).
Package common provides common utils for veinmind-tools use