![Maven Central Adds Sigstore Signature Validation](https://cdn.sanity.io/images/cgdhsj6q/production/7da3bc8a946cfb5df15d7fcf49767faedc72b483-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Maven Central Adds Sigstore Signature Validation
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.
github.com/bits-and-blooms/bloom
A Bloom filter is a representation of a set of n items, where the main requirement is to make membership queries; i.e., whether an item is a member of a set.
A Bloom filter has two parameters: m, a maximum size (typically a reasonably large multiple of the cardinality of the set to represent) and k, the number of hashing functions on elements of the set. (The actual hashing functions are important, too, but this is not a parameter for this implementation). A Bloom filter is backed by a BitSet; a key is represented in the filter by setting the bits at each value of the hashing functions (modulo m). Set membership is done by testing whether the bits at each value of the hashing functions (again, modulo m) are set. If so, the item is in the set. If the item is actually in the set, a Bloom filter will never fail (the true positive rate is 1.0); but it is susceptible to false positives. The art is to choose k and m correctly.
In this implementation, the hashing functions used is murmurhash, a non-cryptographic hashing function.
This implementation accepts keys for setting and testing as []byte
. Thus, to
add a string item, "Love"
:
n := uint(1000)
filter := bloom.New(20*n, 5) // load of 20, 5 keys
filter.Add([]byte("Love"))
Similarly, to test if "Love"
is in bloom:
if filter.Test([]byte("Love"))
For numeric data, I recommend that you look into the encoding/binary library. But, for example, to add a uint32
to the filter:
i := uint32(100)
n1 := make([]byte, 4)
binary.BigEndian.PutUint32(n1, i)
filter.Add(n1)
Finally, there is a method to estimate the false positive rate of a particular bloom filter for a set of size n:
if filter.EstimateFalsePositiveRate(1000) > 0.001
Given the particular hashing scheme, it's best to be empirical about this. Note that estimating the FP rate will clear the Bloom filter.
Discussion here: Bloom filter
Godoc documentation: https://godoc.org/github.com/willf/bloom
go get -u github.com/willf/bloom
If you wish to contribute to this project, please branch and issue a pull request against master ("GitHub Flow")
This project include a Makefile that allows you to test and build the project with simple commands. To see all available options:
make help
Before committing the code, please check if it passes all tests using (note: this will install some dependencies):
make deps
make qa
FAQs
Unknown package
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.
Security News
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
Research
Security News
Socket researchers uncovered a backdoored typosquat of BoltDB in the Go ecosystem, exploiting Go Module Proxy caching to persist undetected for years.