goa is a framework for building micro-services and REST APIs in Go using a
unique design-first approach.
Why goa?
goa takes a different approach to building micro-services. Instead of focusing
solely on helping with implementation, goa makes it possible to describe the
design of your API using a simple Go DSL. goa then uses that description to
generate specialized service helper code, documentation, API clients, tests and
even custom artifacts via plugins.
If DSLs or code generation are not your thing then consider this: APIs are meant
to be consumed. This means that they need to come with accurate documentation
that describes in details each of the API endpoints: their path, their
parameters, their request and response payloads as well as any associated
validation (which parameters are required, their maximum length etc.). Typically
this requires maintaining a completely separate document (for example an OpenAPI
specification). Making sure that the document stays up-to-date takes a lot of
effort and quickly becomes impossible as the number of services and thus APIs
grows. Starting from the design means a single source of truth for the
implementations of the service and the client as well as for the documentation.
Write the DSL once and reap the benefits multiple times over.
Another aspect to consider is the need for designing APIs. The API is the
interface to your service and as such must be crafted carefully. Consistency is
very important and details matter. If the source code is the only place where
design decisions are kept then not only is it very hard to maintain consistency
it's also difficult to think abstractly about the API in the first place. The
goa DSL makes it possible to reason about and describe the design explicitly
and - since it's code - to easily re-use design elements across the service
endpoints or even across multiple services.
goagen
goagen is the code generation tool of
goa. It accepts the design package where the DSL is written as input and
produces various outputs. One of the outputs is the glue code that binds your
code with the underlying HTTP server. This code is specific to your API so that
for example there is no need to cast or "bind" any handler argument prior to
using them. Each generated handler has a signature that is specific to the
corresponding resource action. It's not just the parameters though, each handler
also has access to specific helper methods that generate the possible responses
for that action. The DSL can also define validations in which case the generated
code takes care of validating the incoming request parameters and payload prior
to invoking the handler.
The end result is controller code that is terse and clean, the boilerplate is
all gone. Another big benefit is the clean separation of concern between design
and implementation: on bigger projects it's often the case that API design
changes require careful review. On such project being able to generate a new
version of the documentation without having to write a single line of
implementation is a big boon.
This idea of separating design and implementation is not new, the
excellent Praxis framework from RightScale follows
the same pattern and was an inspiration to goa.
Installation
Assuming you have a working Go setup:
go get -u github.com/goadesign/goa/...
Stable Versions
goa follows Semantic Versioning which is a fancy way of saying it publishes
releases with version numbers of the form vX.Y.Z
and makes sure that your code can upgrade to new
versions with the same X
component without having to make changes.
Releases are tagged with the corresponding version number. There is also a branch for each major
version (only v1
at the moment). The recommended practice is to vendor the stable branch.
Current Release: v1.3.1
Stable Branch: v1
Teaser
1. Design
Create the file $GOPATH/src/goa-adder/design/design.go
with the following content:
package design
import (
. "github.com/goadesign/goa/design"
. "github.com/goadesign/goa/design/apidsl"
)
var _ = API("adder", func() {
Title("The adder API")
Description("A teaser for goa")
Host("localhost:8080")
Scheme("http")
})
var _ = Resource("operands", func() {
Action("add", func() {
Routing(GET("add/:left/:right"))
Description("add returns the sum of the left and right parameters in the response body")
Params(func() {
Param("left", Integer, "Left operand")
Param("right", Integer, "Right operand")
})
Response(OK, "text/plain")
})
})
This file contains the design for an adder
API which accepts HTTP GET requests to /add/:x/:y
where :x
and :y
are placeholders for integer values. The API returns the sum of x
and y
in
its body.
2. Implement
Now that the design is done, let's run goagen
on the design package:
cd $GOPATH/src/goa-adder
goagen bootstrap -d goa-adder/design
This produces the following outputs:
main.go
and operands.go
contain scaffolding code to help bootstrap the implementation.
running goagen
again does not recreate them so that it's safe to edit their content.- an
app
package which contains glue code that binds the low level HTTP server to your
implementation. - a
client
package with a Client
struct that implements a AddOperands
function which calls
the API with the given arguments and returns the http.Response
. - a
tool
directory that contains the complete source for a client CLI tool. - a
swagger
package with implements the GET /swagger.json
API endpoint. The response contains
the full Swagger 2.0 specificiation of the API.
3. Run
First let's implement the API - edit the file operands.go
and replace the content of the Add
function with:
import "strconv"
func (c *OperandsController) Add(ctx *app.AddOperandsContext) error {
sum := ctx.Left + ctx.Right
return ctx.OK([]byte(strconv.Itoa(sum)))
}
Now let's compile and run the service:
cd $GOPATH/src/goa-adder
go build
./goa-adder
2016/04/05 20:39:10 [INFO] mount ctrl=Operands action=Add route=GET /add/:left/:right
2016/04/05 20:39:10 [INFO] listen transport=http addr=:8080
Open a new console and compile the generated CLI tool:
cd $GOPATH/src/goa-adder/tool/adder-cli
go build
The tool includes contextual help:
./adder-cli --help
CLI client for the adder service
Usage:
adder-cli [command]
Available Commands:
add add returns the sum of the left and right parameters in the response body
Flags:
--dump Dump HTTP request and response.
-H, --host string API hostname (default "localhost:8080")
-s, --scheme string Set the requests scheme
-t, --timeout duration Set the request timeout (default 20s)
Use "adder-cli [command] --help" for more information about a command.
To get information on how to call a specific API use:
./adder-cli add operands --help
Usage:
adder-cli add operands [/add/LEFT/RIGHT] [flags]
Flags:
--left int Left operand
--pp Pretty print response body
--right int Right operand
Global Flags:
--dump Dump HTTP request and response.
-H, --host string API hostname (default "localhost:8080")
-s, --scheme string Set the requests scheme
-t, --timeout duration Set the request timeout (default 20s)
Now let's run it:
./adder-cli add operands /add/1/2
2016/04/05 20:43:18 [INFO] started id=HffVaGiH GET=http://localhost:8080/add/1/2
2016/04/05 20:43:18 [INFO] completed id=HffVaGiH status=200 time=1.028827ms
3⏎
This also works:
$ ./adder-cli add operands --left=1 --right=2
2016/04/25 00:08:59 [INFO] started id=ouKmwdWp GET=http://localhost:8080/add/1/2
2016/04/25 00:08:59 [INFO] completed id=ouKmwdWp status=200 time=1.097749ms
3⏎
The console running the service shows the request that was just handled:
2016/06/06 10:23:03 [INFO] started req_id=rLAtsSThLD-1 GET=/add/1/2 from=::1 ctrl=OperandsController action=Add
2016/06/06 10:23:03 [INFO] params req_id=rLAtsSThLD-1 right=2 left=1
2016/06/06 10:23:03 [INFO] completed req_id=rLAtsSThLD-1 status=200 bytes=1 time=66.25µs
Now let's see how robust our service is and try to use non integer values:
./adder-cli add operands add/1/d
2016/06/06 10:24:22 [INFO] started id=Q2u/lPUc GET=http://localhost:8080/add/1/d
2016/06/06 10:24:22 [INFO] completed id=Q2u/lPUc status=400 time=1.301083ms
error: 400: {"code":"invalid_request","status":400,"detail":"invalid value \"d\" for parameter \"right\", must be a integer"}
As you can see the generated code validated the incoming request against the types defined in the
design.
4. Document
The swagger
directory contains the API Swagger (OpenAPI) version 2.0 specification in both
YAML and JSON format.
For open source projects hosted on
github swagger.goa.design provides a free service
that renders the Swagger representation dynamically from goa design packages.
Simply set the url
query string with the import path to the design package.
For example displaying the docs for github.com/goadesign/goa-cellar/design
is
done by browsing to:
http://swagger.goa.design/?url=goadesign%2Fgoa-cellar%2Fdesign
Note that the above generates the swagger spec dynamically and does not require it to be present in
the Github repo.
The Swagger JSON can also easily be served from the documented service itself using a simple
Files
definition in the design. Edit the file design/design.go
and add:
var _ = Resource("swagger", func() {
Origin("*", func() {
Methods("GET")
})
Files("/swagger.json", "swagger/swagger.json")
})
Re-run goagen bootstrap -d goa-adder/design
and note the new file
swagger.go
containing the implementation for a controller that serves the
swagger.json
file.
Mount the newly generated controller by adding the following two lines to the main
function in
main.go
:
cs := NewSwaggerController(service)
app.MountSwaggerController(service, cs)
Recompile and restart the service:
^C
go build
./goa-adder
2016/06/06 10:31:14 [INFO] mount ctrl=Operands action=Add route=GET /add/:left/:right
2016/06/06 10:31:14 [INFO] mount ctrl=Swagger files=swagger/swagger.json route=GET /swagger.json
2016/06/06 10:31:14 [INFO] listen transport=http addr=:8080
Note the new route /swagger.json
. Requests made to it return the Swagger specification. The
generated controller also takes care of adding the proper CORS headers so that the JSON may be
retrieved from browsers using JavaScript served from a different origin (e.g. via Swagger UI). The
client also has a new download
action:
cd tool/adder-cli
go build
./adder-cli download --help
Download file with given path
Usage:
adder-cli download [PATH] [flags]
Flags:
--out string Output file
Global Flags:
--dump Dump HTTP request and response.
-H, --host string API hostname (default "localhost:8080")
-s, --scheme string Set the requests scheme
-t, --timeout duration Set the request timeout (default 20s)
Which can be used like this to download the file swagger.json
in the current directory:
./adder-cli download swagger.json
2016/06/06 10:36:24 [INFO] started file=swagger.json id=ciHL2VLt GET=http://localhost:8080/swagger.json
2016/06/06 10:36:24 [INFO] completed file=swagger.json id=ciHL2VLt status=200 time=1.013307ms
We now have a self-documenting API and best of all the documentation is automatically updated as the
API design changes.
Resources
Consult the following resources to learn more about goa.
goa.design
goa.design contains further information on goa including a getting
started guide, detailed DSL documentation as well as information on how to implement a goa service.
Examples
The examples repo contains simple examples illustrating
basic concepts.
The goa-cellar repo contains the implementation for a
goa service which demonstrates many aspects of the design language. It is kept up-to-date and
provides a reference for testing functionality.
Contributing
Did you fix a bug? write docs or additional tests? or implement some new awesome functionality?
You're a rock star!! Just make sure that make
succeeds (or that TravisCI is green) and send a PR
over.