Sign inDemoInstall

Package Overview
File Explorer

Install Socket

Protect your apps from supply chain attacks


Package pgx is a PostgreSQL database driver. pgx provides lower level access to PostgreSQL than the standard database/sql. It remains as similar to the database/sql interface as possible while providing better speed and access to PostgreSQL specific features. Import to use pgx as a database/sql compatible driver. The primary way of establishing a connection is with `pgx.Connect`. The database connection string can be in URL or DSN format. Both PostgreSQL settings and pgx settings can be specified here. In addition, a config struct can be created by `ParseConfig` and modified before establishing the connection with `ConnectConfig`. `*pgx.Conn` represents a single connection to the database and is not concurrency safe. Use sub-package pgxpool for a concurrency safe connection pool. pgx implements Query and Scan in the familiar database/sql style. pgx also implements QueryRow in the same style as database/sql. Use Exec to execute a query that does not return a result set. QueryFunc can be used to execute a callback function for every row. This is often easier to use than Query. pgx maps between all common base types directly between Go and PostgreSQL. In particular: pgx can map nulls in two ways. The first is package pgtype provides types that have a data field and a status field. They work in a similar fashion to database/sql. The second is to use a pointer to a pointer. pgx maps between int16, int32, int64, float32, float64, and string Go slices and the equivalent PostgreSQL array type. Go slices of native types do not support nulls, so if a PostgreSQL array that contains a null is read into a native Go slice an error will occur. The pgtype package includes many more array types for PostgreSQL types that do not directly map to native Go types. pgx includes built-in support to marshal and unmarshal between Go types and the PostgreSQL JSON and JSONB. pgx encodes from net.IPNet to and from inet and cidr PostgreSQL types. In addition, as a convenience pgx will encode from a net.IP; it will assume a /32 netmask for IPv4 and a /128 for IPv6. pgx includes support for the common data types like integers, floats, strings, dates, and times that have direct mappings between Go and SQL. In addition, pgx uses the library to support more types. See documention for that library for instructions on how to implement custom types. See example_custom_type_test.go for an example of a custom type for the PostgreSQL point type. pgx also includes support for custom types implementing the database/sql.Scanner and database/sql/driver.Valuer interfaces. If pgx does cannot natively encode a type and that type is a renamed type (e.g. type MyTime time.Time) pgx will attempt to encode the underlying type. While this is usually desired behavior it can produce surprising behavior if one the underlying type and the renamed type each implement database/sql interfaces and the other implements pgx interfaces. It is recommended that this situation be avoided by implementing pgx interfaces on the renamed type. Row values and composite types are represented as pgtype.Record ( It is possible to get values of your custom type by implementing DecodeBinary interface. Decoding into pgtype.Record first can simplify process by avoiding dealing with raw protocol directly. For example: []byte passed as arguments to Query, QueryRow, and Exec are passed unmodified to PostgreSQL. Transactions are started by calling Begin. The Tx returned from Begin also implements the Begin method. This can be used to implement pseudo nested transactions. These are internally implemented with savepoints. Use BeginTx to control the transaction mode. BeginFunc and BeginTxFunc are variants that begin a transaction, execute a function, and commit or rollback the transaction depending on the return value of the function. These can be simpler and less error prone to use. Prepared statements can be manually created with the Prepare method. However, this is rarely necessary because pgx includes an automatic statement cache by default. Queries run through the normal Query, QueryRow, and Exec functions are automatically prepared on first execution and the prepared statement is reused on subsequent executions. See ParseConfig for information on how to customize or disable the statement cache. Use CopyFrom to efficiently insert multiple rows at a time using the PostgreSQL copy protocol. CopyFrom accepts a CopyFromSource interface. If the data is already in a [][]interface{} use CopyFromRows to wrap it in a CopyFromSource interface. Or implement CopyFromSource to avoid buffering the entire data set in memory. When you already have a typed array using CopyFromSlice can be more convenient. CopyFrom can be faster than an insert with as few as 5 rows. pgx can listen to the PostgreSQL notification system with the `Conn.WaitForNotification` method. It blocks until a notification is received or the context is canceled. pgx defines a simple logger interface. Connections optionally accept a logger that satisfies this interface. Set LogLevel to control logging verbosity. Adapters for,,,, and the testing log are provided in the log directory. pgx is implemented on top of a lower level PostgreSQL driver. The Conn.PgConn() method can be used to access this lower layer. pgx is compatible with PgBouncer in two modes. One is when the connection has a statement cache in "describe" mode. The other is when the connection is using the simple protocol. This can be set with the PreferSimpleProtocol config option.


Version published


[![Build Status](](


This is the previous stable `v4` release. `v5` been released.

# pgx - PostgreSQL Driver and Toolkit

pgx is a pure Go driver and toolkit for PostgreSQL.

pgx aims to be low-level, fast, and performant, while also enabling PostgreSQL-specific features that the standard `database/sql` package does not allow for.

The driver component of pgx can be used alongside the standard `database/sql` package.

The toolkit component is a related set of packages that implement PostgreSQL functionality such as parsing the wire protocol
and type mapping between PostgreSQL and Go. These underlying packages can be used to implement alternative drivers,
proxies, load balancers, logical replication clients, etc.

The current release of `pgx v4` requires Go modules. To use the previous version, checkout and vendor the `v3` branch.

## Example Usage

package main

import (


func main() {
	// urlExample := "postgres://username:password@localhost:5432/database_name"
	conn, err := pgx.Connect(context.Background(), os.Getenv("DATABASE_URL"))
	if err != nil {
		fmt.Fprintf(os.Stderr, "Unable to connect to database: %v\n", err)
	defer conn.Close(context.Background())

	var name string
	var weight int64
	err = conn.QueryRow(context.Background(), "select name, weight from widgets where id=$1", 42).Scan(&name, &weight)
	if err != nil {
		fmt.Fprintf(os.Stderr, "QueryRow failed: %v\n", err)

	fmt.Println(name, weight)

See the [getting started guide]( for more information.

## Choosing Between the pgx and database/sql Interfaces

It is recommended to use the pgx interface if:
1. The application only targets PostgreSQL.
2. No other libraries that require `database/sql` are in use.

The pgx interface is faster and exposes more features.

The `database/sql` interface only allows the underlying driver to return or receive the following types: `int64`,
`float64`, `bool`, `[]byte`, `string`, `time.Time`, or `nil`. Handling other types requires implementing the
`database/sql.Scanner` and the `database/sql/driver/driver.Valuer` interfaces which require transmission of values in text format. The binary format can be substantially faster, which is what the pgx interface uses.

## Features

pgx supports many features beyond what is available through `database/sql`:

* Support for approximately 70 different PostgreSQL types
* Automatic statement preparation and caching
* Batch queries
* Single-round trip query mode
* Full TLS connection control
* Binary format support for custom types (allows for much quicker encoding/decoding)
* COPY protocol support for faster bulk data loads
* Extendable logging support including built-in support for `log15adapter`, [`logrus`](, [`zap`](, and [`zerolog`](
* Connection pool with after-connect hook for arbitrary connection setup
* Listen / notify
* Conversion of PostgreSQL arrays to Go slice mappings for integers, floats, and strings
* Hstore support
* JSON and JSONB support
* Maps `inet` and `cidr` PostgreSQL types to `net.IPNet` and `net.IP`
* Large object support
* NULL mapping to Null* struct or pointer to pointer
* Supports `database/sql.Scanner` and `database/sql/driver.Valuer` interfaces for custom types
* Notice response handling
* Simulated nested transactions with savepoints

## Performance

There are three areas in particular where pgx can provide a significant performance advantage over the standard
`database/sql` interface and other drivers:

1. PostgreSQL specific types - Types such as arrays can be parsed much quicker because pgx uses the binary format.
2. Automatic statement preparation and caching - pgx will prepare and cache statements by default. This can provide an
   significant free improvement to code that does not explicitly use prepared statements. Under certain workloads, it can
   perform nearly 3x the number of queries per second.
3. Batched queries - Multiple queries can be batched together to minimize network round trips.

## Testing

pgx tests naturally require a PostgreSQL database. It will connect to the database specified in the `PGX_TEST_DATABASE` environment
variable. The `PGX_TEST_DATABASE` environment variable can either be a URL or DSN. In addition, the standard `PG*` environment
variables will be respected. Consider using [direnv]( to simplify environment variable

### Example Test Environment

Connect to your PostgreSQL server and run:

create database pgx_test;

Connect to the newly-created database and run:

create domain uint64 as numeric(20,0);

Now, you can run the tests:

PGX_TEST_DATABASE="host=/var/run/postgresql database=pgx_test" go test ./...

In addition, there are tests specific for PgBouncer that will be executed if `PGX_TEST_PGBOUNCER_CONN_STRING` is set.

## Supported Go and PostgreSQL Versions

pgx supports the same versions of Go and PostgreSQL that are supported by their respective teams. For [Go]( that is the two most recent major releases and for [PostgreSQL]( the major releases in the last 5 years. This means pgx supports Go 1.16 and higher and PostgreSQL 10 and higher. pgx also is tested against the latest version of [CockroachDB](

## Version Policy

pgx follows semantic versioning for the documented public API on stable releases. `v4` is the latest stable major version.

## PGX Family Libraries

pgx is the head of a family of PostgreSQL libraries. Many of these can be used independently. Many can also be accessed
from pgx for lower-level control.

### [](

`pgconn` is a lower-level PostgreSQL database driver that operates at nearly the same level as the C library `libpq`.

### [](

`pgxpool` is a connection pool for pgx. pgx is entirely decoupled from its default pool implementation. This means that pgx can be used with a different pool or without any pool at all.

### [](

This is a `database/sql` compatibility layer for pgx. pgx can be used as a normal `database/sql` driver, but at any time, the native interface can be acquired for more performance or PostgreSQL specific functionality.

### [](

Over 70 PostgreSQL types are supported including `uuid`, `hstore`, `json`, `bytea`, `numeric`, `interval`, `inet`, and arrays. These types support `database/sql` interfaces and are usable outside of pgx. They are fully tested in pgx and pq. They also support a higher performance interface when used with the pgx driver.

### [](

pgproto3 provides standalone encoding and decoding of the PostgreSQL v3 wire protocol. This is useful for implementing very low level PostgreSQL tooling.

### [](

pglogrepl provides functionality to act as a client for PostgreSQL logical replication.

### [](

pgmock offers the ability to create a server that mocks the PostgreSQL wire protocol. This is used internally to test pgx by purposely inducing unusual errors. pgproto3 and pgmock together provide most of the foundational tooling required to implement a PostgreSQL proxy or MitM (such as for a custom connection pooler).

### [](

tern is a stand-alone SQL migration system.

### [](

pgerrcode contains constants for the PostgreSQL error codes.

## 3rd Party Libraries with PGX Support

### [](

Library for scanning data from a database into Go structs and more.

### [](

Adds GSSAPI / Kerberos authentication support.

### [](

Adds support for [``](


Last updated on 28 Feb 2023

Did you know?

Socket installs a GitHub app to automatically flag issues on every pull request and report the health of your dependencies. Find out what is inside your node modules and prevent malicious activity before you update the dependencies.


Related posts

SocketSocket SOC 2 Logo


  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap

Stay in touch

Get open source security insights delivered straight into your inbox.

  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc