Automated management of Jenkins jobs via Maven. Much of the information needed by Jenkins when creating a job is already in the Maven pom. The SCM information and CI url are present. Jenkins jobs also typically have names that reflect the groupId, artifactId, and version in some manner. This plugin automates the process of creating Jenkins jobs by harvesting information from the POM to create XML config files in the format Jenkins needs. The Jenkins CLI API is then used to create, update, read, and delete Jenkins jobs on the CI server. If your Jenkins instance requires authentication, add your public key to your user account on the Jenkins server.
Process Manager, File injection, high performance multi-threadind, ...
ISO 13616-1:2007 specifies the elements of an international bank account number (IBAN) used to facilitate the processing of data internationally in data interchange, in financial environments as well as within and between other industries. The IBAN is designed for automated processing, but can also be used conveniently in other media interchange when appropriate (e.g. paper document exchange, etc.). ISO 13616-1:2007 does not specify internal procedures, file organization techniques, storage media, languages, etc. to be used in its implementation, nor is it designed to facilitate the routing of messages within a network. It is applicable to the textual data which might be conveyed through a system (network). This project provides a general purpose ISO 13616-1:2007 compatible IBAN Java class.
Maven is a project development management and comprehension tool. Based on the concept of a project object model: builds, dependency management, documentation creation, site publication, and distribution publication are all controlled from the declarative file. Maven can be extended by plugins to utilise a number of other development tools for reporting or the build process.
Aspose.Slides for Java is a unique PowerPoint document processing API that enables Java applications to read, write and manipulate PowerPoint documents (PPT, PPTX, POS, PPS, POTX, PPSX) PDF, HTML and image file formats without using Microsoft PowerPoint
Maven plugin to verify a provider ================================= Maven plugin for verifying pacts against a provider. The Maven plugin provides a `verify` goal which will verify all configured pacts against your provider. ## To Use It ### 1. Add the pact-jvm-provider-maven plugin to your `build` section of your pom file. ```xml <build> [...] <plugins> [...] <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> </plugin> [...] </plugins> [...] </build> ``` ### 2. Define the pacts between your consumers and providers You define all the providers and consumers within the configuration element of the maven plugin. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <!-- You can define as many as you need, but each must have a unique name --> <serviceProvider> <name>provider1</name> <!-- All the provider properties are optional, and have sensible defaults (shown below) --> <protocol>http</protocol> <host>localhost</host> <port>8080</port> <path>/</path> <consumers> <!-- Again, you can define as many consumers for each provider as you need, but each must have a unique name --> <consumer> <name>consumer1</name> <!-- currently supports a file path using pactFile or a URL using pactUrl --> <pactFile>path/to/provider1-consumer1-pact.json</pactFile> </consumer> </consumers> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` ### 3. Execute `mvn pact:verify` You will have to have your provider running for this to pass. ## Verifying all pact files in a directory for a provider You can specify a directory that contains pact files, and the Pact plugin will scan for all pact files that match that provider and define a consumer for each pact file in the directory. Consumer name is read from contents of pact file. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <!-- You can define as many as you need, but each must have a unique name --> <serviceProvider> <name>provider1</name> <!-- All the provider properties are optional, and have sensible defaults (shown below) --> <protocol>http</protocol> <host>localhost</host> <port>8080</port> <path>/</path> <pactFileDirectory>path/to/pacts</pactFileDirectory> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` ### Verifying all pact files from multiple directories for a provider [3.5.18+] If you want to specify multiple directories, you can use `pactFileDirectories`. The plugin will only fail the build if no pact files are loaded after processing all the directories in the list. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.18</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <pactFileDirectories> <pactFileDirectory>path/to/pacts1</pactFileDirectory> <pactFileDirectory>path/to/pacts2</pactFileDirectory> </pactFileDirectories> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` ## Enabling insecure SSL For providers that are running on SSL with self-signed certificates, you need to enable insecure SSL mode by setting `<insecure>true</insecure>` on the provider. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <pactFileDirectory>path/to/pacts</pactFileDirectory> <insecure>true</insecure> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` ## Specifying a custom trust store For environments that are running their own certificate chains: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <pactFileDirectory>path/to/pacts</pactFileDirectory> <trustStore>relative/path/to/trustStore.jks</trustStore> <trustStorePassword>changeit</trustStorePassword> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` `trustStore` is either relative to the current working (build) directory. `trustStorePassword` defaults to `changeit`. NOTE: The hostname will still be verified against the certificate. ## Modifying the requests before they are sent Sometimes you may need to add things to the requests that can't be persisted in a pact file. Examples of these would be authentication tokens, which have a small life span. The Pact Maven plugin provides a request filter that can be set to a Groovy script on the provider that will be called before the request is made. This script will receive the HttpRequest bound to a variable named `request` prior to it being executed. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <requestFilter> // This is a Groovy script that adds an Authorization header to each request request.addHeader('Authorization', 'oauth-token eyJhbGciOiJSUzI1NiIsIm...') </requestFilter> <consumers> <consumer> <name>consumer1</name> <pactFile>path/to/provider1-consumer1-pact.json</pactFile> </consumer> </consumers> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` __*Important Note:*__ You should only use this feature for things that can not be persisted in the pact file. By modifying the request, you are potentially modifying the contract from the consumer tests! ## Modifying the HTTP Client Used The default HTTP client is used for all requests to providers (created with a call to `HttpClients.createDefault()`). This can be changed by specifying a closure assigned to createClient on the provider that returns a CloseableHttpClient. For example: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <createClient> // This is a Groovy script that will enable the client to accept self-signed certificates import org.apache.http.ssl.SSLContextBuilder import org.apache.http.conn.ssl.NoopHostnameVerifier import org.apache.http.impl.client.HttpClients HttpClients.custom().setSSLHostnameVerifier(new NoopHostnameVerifier()) .setSslcontext(new SSLContextBuilder().loadTrustMaterial(null, { x509Certificates, s -> true }) .build()) .build() </createClient> <consumers> <consumer> <name>consumer1</name> <pactFile>path/to/provider1-consumer1-pact.json</pactFile> </consumer> </consumers> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` ## Turning off URL decoding of the paths in the pact file By default the paths loaded from the pact file will be decoded before the request is sent to the provider. To turn this behaviour off, set the system property `pact.verifier.disableUrlPathDecoding` to `true`. __*Important Note:*__ If you turn off the url path decoding, you need to ensure that the paths in the pact files are correctly encoded. The verifier will not be able to make a request with an invalid encoded path. ## Plugin Properties The following plugin properties can be specified with `-Dproperty=value` on the command line or in the configuration section: |Property|Description| |--------|-----------| |pact.showStacktrace|This turns on stacktrace printing for each request. It can help with diagnosing network errors| |pact.showFullDiff|This turns on displaying the full diff of the expected versus actual bodies| |pact.filter.consumers|Comma separated list of consumer names to verify| |pact.filter.description|Only verify interactions whose description match the provided regular expression| |pact.filter.providerState|Only verify interactions whose provider state match the provided regular expression. An empty string matches interactions that have no state| |pact.verifier.publishResults|Publishing of verification results will be skipped unless this property is set to 'true' [version 3.5.18+]| |pact.matching.wildcard|Enables matching of map values ignoring the keys when this property is set to 'true'| Example in the configuration section: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <consumers> <consumer> <name>consumer1</name> <pactFile>path/to/provider1-consumer1-pact.json</pactFile> </consumer> </consumers> </serviceProvider> </serviceProviders> <configuration> <pact.showStacktrace>true</pact.showStacktrace> </configuration> </configuration> </plugin> ``` ## Provider States For each provider you can specify a state change URL to use to switch the state of the provider. This URL will receive the providerState description and parameters from the pact file before each interaction via a POST. The stateChangeUsesBody controls if the state is passed in the request body or as query parameters. These values can be set at the provider level, or for a specific consumer. Consumer values take precedent if both are given. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl> <stateChangeUsesBody>false</stateChangeUsesBody> <!-- defaults to true --> <consumers> <consumer> <name>consumer1</name> <pactFile>path/to/provider1-consumer1-pact.json</pactFile> <stateChangeUrl>http://localhost:8080/tasks/pactStateChangeForConsumer1</stateChangeUrl> <stateChangeUsesBody>false</stateChangeUsesBody> <!-- defaults to true --> </consumer> </consumers> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` If the `stateChangeUsesBody` is not specified, or is set to true, then the provider state description and parameters will be sent as JSON in the body of the request. If it is set to false, they will passed as query parameters. As for normal requests (see Modifying the requests before they are sent), a state change request can be modified before it is sent. Set `stateChangeRequestFilter` to a Groovy script on the provider that will be called before the request is made. #### Teardown calls for state changes You can enable teardown state change calls by setting the property `<stateChangeTeardown>true</stateChangeTeardown>` on the provider. This will add an `action` parameter to the state change call. The setup call before the test will receive `action=setup`, and then a teardown call will be made afterwards to the state change URL with `action=teardown`. ## Verifying pact files from a pact broker You can setup your build to validate against the pacts stored in a pact broker. The pact plugin will query the pact broker for all consumers that have a pact with the provider based on its name. To use it, just configure the `pactBrokerUrl` or `pactBroker` value for the provider with the base URL to the pact broker. For example: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl> <pactBrokerUrl>http://pact-broker:5000/</pactBrokerUrl> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` ### Verifying pacts from an authenticated pact broker If your pact broker requires authentication (basic authentication is only supported), you can configure the username and password to use by configuring the `authentication` element of the `pactBroker` element of your provider. For example: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl> <pactBroker> <url>http://pactbroker:1234</url> <authentication> <username>test</username> <password>test</password> </authentication> </pactBroker> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` #### Using the Maven servers configuration [version 3.5.6+] From version 3.5.6, you can use the servers setup in the Maven settings. To do this, setup a server as per the [Maven Server Settings](https://maven.apache.org/settings.html#Servers). Then set the server ID in the pact broker configuration in your POM. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.6</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl> <pactBroker> <url>http://pactbroker:1234</url> <serverId>test-pact-broker</serverId> <!-- This must match the server id in the maven settings --> </pactBroker> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` ### Verifying pacts from an pact broker that match particular tags If your pacts in your pact broker have been tagged, you can set the tags to fetch by configuring the `tags` element of the `pactBroker` element of your provider. For example: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>provider1</name> <stateChangeUrl>http://localhost:8080/tasks/pactStateChange</stateChangeUrl> <pactBroker> <url>http://pactbroker:1234</url> <tags> <tag>TEST</tag> <tag>DEV</tag> </tags> </pactBroker> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` This example will fetch and validate the pacts for the TEST and DEV tags. ## Filtering the interactions that are verified You can filter the interactions that are run using three properties: `pact.filter.consumers`, `pact.filter.description` and `pact.filter.providerState`. Adding `-Dpact.filter.consumers=consumer1,consumer2` to the command line or configuration section will only run the pact files for those consumers (consumer1 and consumer2). Adding `-Dpact.filter.description=a request for payment.*` will only run those interactions whose descriptions start with 'a request for payment'. `-Dpact.filter.providerState=.*payment` will match any interaction that has a provider state that ends with payment, and `-Dpact.filter.providerState=` will match any interaction that does not have a provider state. ## Not failing the build if no pact files are found [version 3.5.19+] By default, if there are no pact files to verify, the plugin will raise an exception. This is to guard against false positives where the build is passing but nothing has been verified due to mis-configuration. To disable this behaviour, set the `failIfNoPactsFound` parameter to `false`. # Verifying a message provider The Maven plugin has been updated to allow invoking test methods that can return the message contents from a message producer. To use it, set the way to invoke the verification to `ANNOTATED_METHOD`. This will allow the pact verification task to scan for test methods that return the message contents. Add something like the following to your maven pom file: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>messageProvider</name> <verificationType>ANNOTATED_METHOD</verificationType> <!-- packagesToScan is optional, but leaving it out will result in the entire test classpath being scanned. Set it to the packages where your annotated test method can be found. --> <packagesToScan> <packageToScan>au.com.example.messageprovider.*</packageToScan> </packagesToScan> <consumers> <consumer> <name>consumer1</name> <pactFile>path/to/messageprovider-consumer1-pact.json</pactFile> </consumer> </consumers> </serviceProvider> </serviceProviders> </configuration> </plugin> ``` Now when the pact verify task is run, will look for methods annotated with `@PactVerifyProvider` in the test classpath that have a matching description to what is in the pact file. ```groovy class ConfirmationKafkaMessageBuilderTest { @PactVerifyProvider('an order confirmation message') String verifyMessageForOrder() { Order order = new Order() order.setId(10000004) order.setExchange('ASX') order.setSecurityCode('CBA') order.setPrice(BigDecimal.TEN) order.setUnits(15) order.setGst(new BigDecimal('15.0')) odrer.setFees(BigDecimal.TEN) def message = new ConfirmationKafkaMessageBuilder() .withOrder(order) .build() JsonOutput.toJson(message) } } ``` It will then validate that the returned contents matches the contents for the message in the pact file. ## Changing the class path that is scanned By default, the test classpath is scanned for annotated methods. You can override this by setting the `classpathElements` property: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <serviceProviders> <serviceProvider> <name>messageProvider</name> <verificationType>ANNOTATED_METHOD</verificationType> <consumers> <consumer> <name>consumer1</name> <pactFile>path/to/messageprovider-consumer1-pact.json</pactFile> </consumer> </consumers> </serviceProvider> </serviceProviders> <classpathElements> <classpathElement> build/classes/test </classpathElement> </classpathElements> </configuration> </plugin> ``` # Publishing pact files to a pact broker The pact maven plugin provides a `publish` mojo that can publish all pact files in a directory to a pact broker. To use it, you need to add a publish configuration to the POM that defines the directory where the pact files are and the URL to the pact broker. For example: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <pactDirectory>path/to/pact/files</pactDirectory> <!-- Defaults to ${project.build.directory}/pacts --> <pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl> <projectVersion>1.0.100</projectVersion> <!-- Defaults to ${project.version} --> <trimSnapshot>true</trimSnapshot> <!-- Defaults to false --> </configuration> </plugin> ``` You can now execute `mvn pact:publish` to publish the pact files. _NOTE:_ The pact broker requires a version for all published pacts. The `publish` task will use the version of the project by default, but can be overwritten with the `projectVersion` property. Make sure you have set one otherwise the broker will reject the pact files. _NOTE_: By default, the pact broker has issues parsing `SNAPSHOT` versions. You can configure the publisher to automatically remove `-SNAPSHOT` from your version number by setting `trimSnapshot` to true. This setting does not modify non-snapshot versions. You can set any tags that the pacts should be published with by setting the `tags` list property (version 3.5.12+). A common use of this is setting the tag to the current source control branch. This supports using pact with feature branches. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.12</version> <configuration> <pactDirectory>path/to/pact/files</pactDirectory> <!-- Defaults to ${project.build.directory}/pacts --> <pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl> <projectVersion>1.0.100</projectVersion> <!-- Defaults to ${project.version} --> <tags> <tag>feature/feature_name</tag> </tags> </configuration> </plugin> ``` ## Publishing to an authenticated pact broker For an authenticated pact broker, you can pass in the credentials with the `pactBrokerUsername` and `pactBrokerPassword` properties. Currently it only supports basic authentication. For example: ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.11</version> <configuration> <pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl> <pactBrokerUsername>USERNAME</pactBrokerUsername> <pactBrokerPassword>PASSWORD</pactBrokerPassword> </configuration> </plugin> ``` #### Using the Maven servers configuration [version 3.5.6+] From version 3.5.6, you can use the servers setup in the Maven settings. To do this, setup a server as per the [Maven Server Settings](https://maven.apache.org/settings.html#Servers). Then set the server ID in the pact broker configuration in your POM. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.11</artifactId> <version>3.5.19</version> <configuration> <pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl> <pactBrokerServerId>test-pact-broker</pactBrokerServerId> <!-- This must match the server id in the maven settings --> </configuration> </plugin> ``` ## Excluding pacts from being published [version 3.5.19+] You can exclude some of the pact files from being published by providing a list of regular expressions that match against the base names of the pact files. For example: ```groovy pact { publish { pactBrokerUrl = 'https://mypactbroker.com' excludes = [ '.*\\-\\d+$' ] // exclude all pact files that end with a dash followed by a number in the name } } ``` ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.19</version> <configuration> <pactBrokerUrl>http://pactbroker:1234</pactBrokerUrl> <excludes> <exclude>.*\\-\\d+$</exclude> <!-- exclude pact files where the name ends in a dash followed by a number --> </excludes> </configuration> </plugin> ``` # Publishing verification results to a Pact Broker [version 3.5.4+] For pacts that are loaded from a Pact Broker, the results of running the verification can be published back to the broker against the URL for the pact. You will be able to then see the result on the Pact Broker home screen. To turn on the verification publishing, set the system property `pact.verifier.publishResults` to `true` in the pact maven plugin, not surefire, configuration. # Enabling other verification reports [version 3.5.20+] By default the verification report is written to the console. You can also enable a JSON or Markdown report by setting the `reports` configuration list. ```xml <plugin> <groupId>au.com.dius</groupId> <artifactId>pact-jvm-provider-maven_2.12</artifactId> <version>3.5.20</version> <configuration> <reports> <report>console</report> <report>json</report> <report>markdown</report> </reports> </configuration> </plugin> ``` These reports will be written to `target/reports/pact`.
IIM4J allows Java programmers to read, write and process IPTC IIM version 4 files.
Euler - File Processing API - Common classes module.
In some data processing tasks we need to use huge maps or sets that are bigger than available JVM heap space or they are loading too slow to standard Java or Scala Maps. We use TSV format (text file with tab separated columns) for persist this kind of Maps or Sets. Some columns are used as a key and rest of columns as a value. Idea of this library is simple. We can prepare these maps once (sort by key), store it to file and then use it as memory mapped file. Searching key in sorted file has log(n) complexity. If more processes uses the same memory mapped file, it exists in memory just once (on Linux). This file can be loaded lazy by OS.
In some data processing tasks we need to use huge maps or sets that are bigger than available JVM heap space or they are loading too slow to standard Java or Scala Maps. We use TSV format (text file with tab separated columns) for persist this kind of Maps or Sets. Some columns are used as a key and rest of columns as a value. Idea of this library is simple. We can prepare these maps once (sort by key), store it to file and then use it as memory mapped file. Searching key in sorted file has log(n) complexity. If more processes uses the same memory mapped file, it exists in memory just once (on Linux). This file can be loaded lazy by OS.
In some data processing tasks we need to use huge maps or sets that are bigger than available JVM heap space or they are loading too slow to standard Java or Scala Maps. We use TSV format (text file with tab separated columns) for persist this kind of Maps or Sets. Some columns are used as a key and rest of columns as a value. Idea of this library is simple. We can prepare these maps once (sort by key), store it to file and then use it as memory mapped file. Searching key in sorted file has log(n) complexity. If more processes uses the same memory mapped file, it exists in memory just once (on Linux). This file can be loaded lazy by OS.
Flatifier plugin to generate single file coaches during the build process.
A library to create well behaved clients for aggregating and processing real-time live data.
Upload your Proguard mapping files to BugSense as part of the build process.
Components to process files
Properties file processing components: Instead of java.util.Properties.
Noble Tools Suite, is a set of Natural Language Processing (NLP) tools and Application Programming Interfaces (API) written in Java for interfacing with ontologies, auto coding text and extracting information from free test. The Noble Tools suite also includes a generic ontology API for interfacing with Web Ontology Language (OWL) files, OBO and BioPortal ontologies and a number of support utilities and methods useful for NLP (e.g. string normalization, ngram and stemming)
Manipulation Tool for NPM that allows pre-processing of project definition files (package.json).
BioJava is an open-source project dedicated to providing a Java framework for processing biological data. It provides analytical and statistical routines, parsers for common file formats and allows the manipulation of sequences and 3D structures. The goal of the biojava project is to facilitate rapid application development for bioinformatics.
Euler - File Processing API - Tika module.
Euler - File Processing API - Elasticsearch module.
AWS CloudTrail Processing Library for Java helps Java developers to easily consume and process log files from AWS CloudTrail.
"vcard-androidParser" is an android library for developers who need to process contacts backup files or simple vcard or vcf files. This library is android mapping of ez-vcard
Laconic API for YAML files processing
A library to create well behaved clients for aggregating and processing real-time live data.
This mojo reads a package.json file and stores the name and version fields as properties in the maven build process.
Properties file processing components: Instead of java.util.Properties.
WDTK support for processing Wikibase dump files
SEWOL provides support for the handling of workflow traces. Specifically it allows to specify the shape and content of process traces in terms of entries representing the execution of a specific workflow activity. SEWOL also allows to write these traces on disk as a log file with the help of a special file writer for process logs. Currently it supports plain text, Petrify, MXML and XES log file types. In order to specify security-related context information, SEWOL provides access control models such as access control lists (ACL) and role-based access control models (RBAC). All types of models can be conveniently edited with the help of appropriate dialogs.
Euler - File Processing API.
Euler - File Processing API - Samples module.
Euler - File Processing API - Preview module.
Euler - File Processing API - Cluster module.
Euler - File Processing API - OpenCV module.
Cmdline interface to process YAML files, leveraging the brilliantly robust gitbub project github.com:esotericsoftware/yamlbeans.git (which is a Java object graphs, to and from YAML)
Config Schema is a simple schema processing library, providing a convenient schema file for configuration properties
Contains an ant build file that is used when processing gettext po files in the addc-pom file for I18N support
The AppOptics Java instrumentation agent jar file. This artifact provides a convenient way to download the agent jar from public Maven repository. Please take note that this should NOT be included as a part of the project dependencies. Rather, this artifact should be integrated into the build process by using extra step such as the "copy" goal of "maven-dependency-plugin". For more information, please refer to https://docs.appoptics.com/kb/apm_tracing/java/install/#getting-the-agent-jar
This project can help you export data to excel file , and convert excel file to java entity.
TagSoup is a SAX-compliant parser written in Java that, instead of parsing well-formed or valid XML, parses HTML as it is found in the wild: poor, nasty and brutish, though quite often far from short. TagSoup is designed for people who have to process this stuff using some semblance of a rational application design. By providing a SAX interface, it allows standard XML tools to be applied to even the worst HTML. TagSoup also includes a command-line processor that reads HTML files and can generate either clean HTML or well-formed XML that is a close approximation to XHTML.
Project Gärtner is set of Annotations and Annotationprocessors to simplify the generation of UML Diagrams from Java Code. It generates .puml Files further processed by PlantUml and generates diagrams in SVG format.
Project Gärtner is set of Annotations and Annotationprocessors to simplify the generation of UML Diagrams from Java Code. It generates .puml Files further processed by PlantUml and generates diagrams in SVG format.
This Maven plugin processes HTML, CSS and JS resource files and minifies them.
ORC is a self-describing type-aware columnar file format designed for Hadoop workloads. It is optimized for large streaming reads, but with integrated support for finding required rows quickly. Storing data in a columnar format lets the reader read, decompress, and process only the values that are required for the current query.
ORC is a self-describing type-aware columnar file format designed for Hadoop workloads. It is optimized for large streaming reads, but with integrated support for finding required rows quickly. Storing data in a columnar format lets the reader read, decompress, and process only the values that are required for the current query.
Maven 2 Plugin for processing JavaCC grammar files.
Build utilities used by the Project Darkstar build process. Includes custom checkstyle configuration files.
The JSP TLD Maven Plugin is used to automate the management of JSP Tag Library Descriptors as part of a Maven build. It is intended to decrease the burden on JSP developers associated with writing custom JSP Tag Libraries. The goal is to encourage JSP developers to write better JSP files by using custom JSP Tag Libraries more extensively. The Plugin can process Java annotations on Tag implementation classes and also discover Tag Files (.tag and .tagx files). The Java 5 Annotations recognized by this Plugin are all part of the <a href="../squeakysand-jsp/apidocs/com/squeakysand/jsp/tagext/annotations/package-summary.html">com.squeakysand.jsp.tagext.annotations</a> package.
Process Manager, File injection, high performance multi-threadind, ...
Process Manager, File injection, high performance multi-threadind, ...