Hexagon
The atoms of your platform
Home Site |
Quick Start
What is Hexagon
Hexagon is a microservices' toolkit (not a framework) written in Kotlin. Its purpose is to ease
the building of server applications (Web applications, APIs or queue consumers) that run inside a
cloud platform.
The Hexagon Toolkit provides several libraries to build server applications. These libraries provide
single standalone features and are referred to as "Ports".
The main ports are:
- The HTTP server: supports HTTPS, HTTP/2, mutual TLS, static files (serve and upload), forms
processing, cookies, CORS and more.
- The HTTP client: which supports mutual TLS, HTTP/2, cookies, form fields and files among other
features.
- Template Processing: allows template processing from URLs (local files, resources or HTTP
content) binding name patterns to different engines.
Each of these features or ports may have different implementations called
"Adapters".
Hexagon is designed to fit in applications that conform to the Hexagonal Architecture (also called
Clean Architecture or Ports and Adapters Architecture). Also, its design principles also fits in
this architecture.
The Hexagon's goals and design principles are:
-
Put you in Charge: There is no code generation, no runtime annotation processing, no classpath
based logic, and no implicit behaviour. You control your tools, not the other way around.
-
Modular: Each feature (Port) or adapter is isolated in its own module. Use only the modules
you need without carrying unneeded dependencies.
-
Pluggable Adapters: Every Port may have many implementations (Adapters) using different
technologies. You can swap adapters without changing the application code.
-
Batteries Included: It contains all the required pieces to make production-grade applications:
logging utilities, serialization, resource handling and build helpers.
-
Kotlin First: Take full advantage of Kotlin instead of just calling Java code from Kotlin. The
library is coded in Kotlin for coding with Kotlin. No strings attached to Java (as a Language).
-
Properly Tested: The project's coverage is checked in every Pull Request. It is also
stress-tested at TechEmpower Frameworks Benchmark.
For more information check the Quick Start Guide.
Simple HTTP service
You can clone a starter project (Gradle Starter or Maven Starter). Or you can create a project
from scratch following these steps:
- Configure Kotlin in Gradle or Maven.
- Add the dependency:
-
In Gradle. Import it inside build.gradle
:
repositories {
mavenCentral()
}
implementation("com.hexagontk:http_server_jetty:$hexagonVersion")
-
In Maven. Declare the dependency in pom.xml
:
<dependency>
<groupId>com.hexagontk</groupId>
<artifactId>http_server_jetty</artifactId>
<version>$hexagonVersion</version>
</dependency>
- Write the code in the
src/main/kotlin/Hello.kt
file:
import com.hexagontk.core.media.TEXT_PLAIN
import com.hexagontk.http.model.ContentType
import com.hexagontk.http.server.HttpServer
import com.hexagontk.http.server.jetty.serve
lateinit var server: HttpServer
fun main() {
server = serve {
get("/hello/{name}") {
val name = pathParameters["name"]
ok("Hello $name!", contentType = ContentType(TEXT_PLAIN))
}
}
}
- Run the service and view the results at: http://localhost:2010/hello
Examples
Books Example
A simple CRUD example showing how to manage book resources. Here you can check the
full test.
data class Book(val author: String, val title: String)
private val books: MutableMap<Int, Book> = linkedMapOf(
100 to Book("Miguel de Cervantes", "Don Quixote"),
101 to Book("William Shakespeare", "Hamlet"),
102 to Book("Homer", "The Odyssey")
)
private val path: PathHandler = path {
post("/books") {
val author = queryParameters["author"]?.text ?: return@post badRequest("Missing author")
val title = queryParameters["title"]?.text ?: return@post badRequest("Missing title")
val id = (books.keys.maxOrNull() ?: 0) + 1
books += id to Book(author, title)
created(id.toString())
}
get("/books/{id}") {
val bookId = pathParameters.require("id").toInt()
val book = books[bookId]
if (book != null)
ok("Title: ${book.title}, Author: ${book.author}")
else
notFound("Book not found")
}
put("/books/{id}") {
val bookId = pathParameters.require("id").toInt()
val book = books[bookId]
if (book != null) {
books += bookId to book.copy(
author = queryParameters["author"]?.text ?: book.author,
title = queryParameters["title"]?.text ?: book.title
)
ok("Book with id '$bookId' updated")
}
else {
notFound("Book not found")
}
}
delete("/books/{id}") {
val bookId = pathParameters.require("id").toInt()
val book = books[bookId]
books -= bookId
if (book != null)
ok("Book with id '$bookId' deleted")
else
notFound("Book not found")
}
after(ALL - DELETE - PUT - GET, "/books/{id}", status = NOT_FOUND_404) {
send(METHOD_NOT_ALLOWED_405)
}
get("/books") {
ok(books.keys.joinToString(" ", transform = Int::toString))
}
}
Error Handling Example
Code to show how to handle callback exceptions and HTTP error codes. Here you can check the
full test.
class CustomException : IllegalArgumentException()
private val path: PathHandler = path {
exception<Exception> {
internalServerError("Root handler")
}
exception<IllegalArgumentException> {
val error = exception?.message ?: exception?.javaClass?.name ?: fail
val newHeaders = response.headers + Field("runtime-error", error)
send(598, "Runtime", headers = newHeaders)
}
exception<UnsupportedOperationException> {
val error = exception?.message ?: exception?.javaClass?.name ?: fail
val newHeaders = response.headers + Field("error", error)
send(599, "Unsupported", headers = newHeaders)
}
get("/exception") { throw UnsupportedOperationException("error message") }
get("/baseException") { throw CustomException() }
get("/unhandledException") { error("error message") }
get("/invalidBody") { ok(LocalDateTime.now()) }
get("/halt") { internalServerError("halted") }
get("/588") { send(588) }
before(pattern = "*", status = 588) {
send(578, "588 -> 578")
}
}
Filters Example
This example shows how to add filters before and after route execution. Here you can check the
full test.
private val users: Map<String, String> = mapOf(
"Turing" to "London",
"Dijkstra" to "Rotterdam"
)
private val path: PathHandler = path {
filter("*") {
val start = System.nanoTime()
val next = next()
val time = (System.nanoTime() - start).toString()
next.send(headers = response.headers + Field("time", time))
}
filter("/protected/*") {
val authorization = request.authorization ?: return@filter unauthorized("Unauthorized")
val credentials = authorization.body
val userPassword = String(credentials.decodeBase64()).split(":")
send(attributes = attributes
+ ("username" to userPassword[0])
+ ("password" to userPassword[1])
).next()
}
filter("/protected/*") {
if(users[attributes["username"]] != attributes["password"])
send(FORBIDDEN_403, "Forbidden")
else
next()
}
get("/protected/hi") {
ok("Hello ${attributes["username"]}!")
}
path("/after") {
after(PUT) {
send(ALREADY_REPORTED_208)
}
after(PUT, "/second") {
send(NO_CONTENT_204)
}
after("/second") {
send(CREATED_201)
}
after {
send(ACCEPTED_202)
}
}
}
Files Example
The following code shows how to serve resources and receive files. Here you can check the
full test.
private val path: PathHandler = path {
after(
methods = setOf(GET),
pattern = "/*",
status = NOT_FOUND_404,
callback = UrlCallback(urlOf("classpath:public"))
)
path("/static") {
get("/files/*", UrlCallback(urlOf("classpath:assets")))
get("/resources/*", FileCallback(File(directory)))
}
get("/html/*", UrlCallback(urlOf("classpath:assets")))
get("/pub/*", FileCallback(File(directory)))
post("/multipart") {
val headers = parts.first().let { p ->
val name = p.name
val bodyString = p.bodyString()
val size = p.size.toString()
Headers(
Field("name", name),
Field("body", bodyString),
Field("size", size),
)
}
ok(headers = headers)
}
post("/file") {
val part = parts.first()
val content = part.bodyString()
val submittedFile = part.submittedFileName ?: ""
ok(content, headers = response.headers + Field("submitted-file", submittedFile))
}
post("/form") {
fun serializeMap(map: Parameters): List<String> = listOf(
map.all.entries.joinToString("\n") { (k, v) ->
"$k:${v.joinToString(",") { it.text }}"
}
)
val queryParams = serializeMap(queryParameters)
val formParams = serializeMap(formParameters)
val headers = Headers(
Field("query-params", queryParams),
Field("form-params", formParams)
)
ok(headers = response.headers + headers)
}
}
You can check more sample projects and snippets at the examples page.
Thanks
This project is supported by:
Status
The toolkit is properly tested. This is the coverage report:
Performance is not the primary goal, but it is taken seriously. You can check performance numbers
in the TechEmpower Web Framework Benchmarks.
Contribute
If you like this project and want to support it, the easiest way is to give it a star :v:.
If you feel like you can do more. You can contribute to the project in different ways:
To know what issues are currently open and be aware of the next features you can check the
Organization Board at GitHub.
You can ask any question, suggestion or complaint at the project's discussions. You can
be up-to-date of project's news following @hexagontk on X (Twitter).
Thanks to all project's contributors!
License
The project is licensed under the MIT License. This license lets you use the source for free or
commercial purposes as long as you provide attribution and don’t hold any project member liable.