Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

3net.js

Package Overview
Dependencies
Maintainers
1
Versions
10
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

3net.js

A simple library for implementing 3 layer neural networks

  • 0.2.0
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

3net.js

A simple library for implementing 3 layer neural networks

NPM

Initialization
var three_net = require('3net.js');     // Install with 'npm install 3net.js'
var inputLayer = 400;
var hiddenLayer = 25;
var outputLayer = 10;
var neuron = "rectifier";               // Currently sigmoid and rectifier are supported

//If neuron is not specified, the default sigmoid will be used
var net = three_net.createNet(inputLayer, hiddenLayer, outputLayer, neuron);  
Online training
// If options is not specified, the default values will be used.
options = {
    "learning_rate": 0.3,   // Learning rate for gradient descent. The default is 0.5
    "regularization": 0.3,  // Regularization parameter to prevent overfitting. The default is 0
};

// Data and label must be an array matching the dimensions of the input layer and output layer
var success = net.train(data, label, options);

//Returns true if training was successful
if (success) console.log("training complete");  
Training on a set
// If options is not specified, the default values will be used.
options = {
    "iters": 100,               // Maximum amount of time stochastic gradient descent will run. The default is 1000
    "learning_rate": 0.5,       // Learning rate for gradient descent. The default is 0.5
    "regularization": 1,        // Regularization parameter to prevent overfitting. The default is 0
    "change_cost": 0.00001,     // If the change in cost between iterations is less than this, the net will stop training. The default is 0.00001
};

// Data and label are arrays containing the training set
var success = net.trainSet(dataset, labels, options);

//Returns true if training was successful
if (success) console.log("training complete");  
Predicting
net.predict(data);  // Returns an array with the output layer activations
Importing and exporting
var savedNet = net.exportNet();                 // Exports as JSON
var copiedNet = three_net.importNet(savedNet);  // Imports from JSON
Example: Training an XOR
var three_net = require('3net.js');
var net = three_net.createNet(2, 3, 1);

inputs = [[0, 0], [0, 1], [1, 0], [1, 1]];
labels = [[0], [1], [1], [0]];

// Uses default options since it is not specified
net.trainSet(inputs, labels);

console.log(net.predict([1, 1])); // Outputs 0.020773462753469724
console.log(net.predict([1, 0])); // Outputs 0.9836636258293651

// Output values be slightly different when you try it because of random intialization

Keywords

FAQs

Package last updated on 25 Aug 2015

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc