@axflow/models
Zero-dependency, modular SDK for building robust natural language applications.
npm i @axflow/models
Features
- First-class streaming support for both low-level byte streams and higher-level JavaScript object streams
- First-class support for streaming arbitrary data in addition to the LLM response
- Comes with a set of utilities and React hooks for easily creating robust client applications
- Built exclusively on modern web standards such as
fetch
and the stream APIs - Supports Node 18+, Next.js serverless or edge runtime, Express.js, browsers, ESM, CJS, and more
- Supports a custom
fetch
implementation for request middleware (e.g., custom headers, logging)
Supported models
- ✅ OpenAI and OpenAI-compatible Chat, Completion, and Embedding models
- ✅ Cohere and Cohere-compatible Generation and Embedding models
- ✅ Anthropic and Anthropic-compatible Completion models
- ✅ HuggingFace text generation inference API and Inference Endpoints
- HuggingFace (coming soon)
- Google PaLM models (coming soon)
- Azure OpenAI (coming soon)
- Replicate (coming soon)
Documentation
View the Guides or the reference:
Example Usage
import { OpenAIChat } from '@axflow/models/openai/chat';
import { CohereGenerate } from '@axflow/models/cohere/generate';
import { StreamToIterable } from '@axflow/models/shared';
const gpt4Stream = OpenAIChat.stream(
{
model: 'gpt-4',
messages: [{ role: 'user', content: 'What is the Eiffel tower?' }],
},
{
apiKey: '<openai api key>',
},
);
const cohereStream = CohereGenerate.stream(
{
model: 'command-nightly',
prompt: 'What is the Eiffel tower?',
},
{
apiKey: '<cohere api key>',
},
);
for await (const chunk of StreamToIterable(gpt4Stream)) {
console.log(chunk.choices[0].delta.content);
}
for await (const chunk of StreamToIterable(cohereStream)) {
console.log(chunk.text);
}
For models that support streaming, there is a convenience method for streaming only the string tokens.
import { OpenAIChat } from '@axflow/models/openai/chat';
const tokenStream = OpenAIChat.streamTokens(
{
model: 'gpt-4',
messages: [{ role: 'user', content: 'What is the Eiffel tower?' }],
},
{
apiKey: '<openai api key>',
},
);
for await (const token of tokenStream) {
process.stdout.write(token);
}
process.stdout.write('\n');
useChat
hook for dead simple UI integration
We've made building chat and completion UIs trivial. It doesn't get any easier than this 🚀
import { OpenAIChat } from '@axflow/models/openai/chat';
import { StreamingJsonResponse, type MessageType } from '@axflow/models/shared';
export const runtime = 'edge';
export async function POST(request: Request) {
const { messages } = await request.json();
const stream = await OpenAIChat.streamTokens(
{
model: 'gpt-4',
messages: messages.map((msg: MessageType) => ({ role: msg.role, content: msg.content })),
},
{
apiKey: process.env.OPENAI_API_KEY!,
},
);
return new StreamingJsonResponse(stream);
}
import { useChat } from '@axflow/models/react';
function ChatComponent() {
const { input, messages, onChange, onSubmit } = useChat();
return (
<>
<Messages messages={messages} />
<Form input={input} onChange={onChange} onSubmit={onSubmit} />
</>
);
}
Next.js edge proxy example
Sometimes you just want to create a proxy to the underlying LLM API. In this example, the server intercepts the request on the edge, adds the proper API key, and forwards the byte stream back to the client.
Note this pattern works exactly the same with our other models that support streaming, like Cohere and Anthropic.
import { NextRequest, NextResponse } from 'next/server';
import { OpenAIChat } from '@axflow/models/openai/chat';
export const runtime = 'edge';
export async function POST(request: NextRequest) {
const chatRequest = await request.json();
const stream = await OpenAIChat.streamBytes(chatRequest, {
apiKey: process.env.OPENAI_API_KEY!,
});
return new NextResponse(stream);
}
On the client, we can use OpenAIChat.stream
with a custom apiUrl
in place of the apiKey
that points to our Next.js edge route.
DO NOT expose api keys to your frontend.
import { OpenAIChat } from '@axflow/models/openai/chat';
import { StreamToIterable } from '@axflow/models/shared';
const stream = await OpenAIChat.stream(
{
model: 'gpt-4',
messages: [{ role: 'user', content: 'What is the Eiffel tower?' }],
},
{
apiUrl: '/api/openai/chat',
},
);
for await (const chunk of StreamToIterable(stream)) {
console.log(chunk.choices[0].delta.content);
}
Express.js example
Uses express + React hook on frontend.
const express = require('express');
const { OpenAIChat } = require('@axflow/models/openai/chat');
const { streamJsonResponse } = require('@axflow/models/node');
const app = express();
app.use(express.json());
app.post('/api/chat', async (req, res) => {
const { messages } = req.body;
const stream = await OpenAIChat.streamTokens(
{
model: 'gpt-3.5-turbo',
messages: messages.map((msg) => ({
role: msg.role,
content: msg.content,
})),
},
{
apiKey: process.env.OPENAI_API_KEY,
},
);
return streamJsonResponse(stream, res);
});
app.listen(port, () => {
console.log(`Example app listening on port ${port}`);
});
import { useChat } from '@axflow/models/react';
function ChatComponent() {
const { input, messages, onChange, onSubmit } = useChat();
return (
<>
<Messages messages={messages} />
<Form input={input} onChange={onChange} onSubmit={onSubmit} />
</>
);
}