Security News
GitHub Removes Malicious Pull Requests Targeting Open Source Repositories
GitHub removed 27 malicious pull requests attempting to inject harmful code across multiple open source repositories, in another round of low-effort attacks.
@d3fc/d3fc-label-layout
Advanced tools
A D3 layout that places labels avoiding overlaps using either a greedy or simulated annealing strategy
A D3 layout that places labels avoiding overlaps, with strategies including simulated annealing, greedy and a strategy that removes overlapping labels.
For a live demo, see the GitHub Pages site.
npm install d3fc-label-layout
The label layout component provides a mechanism for arranging child components based on their rectangular bounding boxes. It is typically used to render labels on maps or charts. A layout strategy is passed to the component in order to arrange the child rectangles avoiding collisions or remove overlaps.
import { layoutTextLabel, layoutGreedy,
layoutLabel, layoutRemoveOverlaps } from 'd3fc-label-layout';
import { select } from 'd3-selection';
const labelPadding = 2;
// the component used to render each label
const textLabel = layoutTextLabel()
.padding(labelPadding)
.value(d => d.properties.name);
// a strategy that combines simulated annealing with removal
// of overlapping labels
const strategy = layoutRemoveOverlaps(layoutGreedy());
// create the layout that positions the labels
const labels = layoutLabel(strategy)
.size((d, i, g) => {
// measure the label and add the required padding
const textSize = g[i].getElementsByTagName('text')[0].getBBox();
return [textSize.width + labelPadding * 2, textSize.height + labelPadding * 2];
})
.position(d => projection(d.geometry.coordinates))
.component(textLabel);
// render!
svg.datum(places.features)
.call(labels);
The above snippet is taken from a complete example showing how this label layout component can be used to arrange labels on a map.
For integration with charts the label layout component exposes xScale
and yScale
properties, as shown in this example.
# fc.layoutLabel(strategy)
Constructs a new label layout with the given strategy. The label layout creates an array of rectangle bounding boxes which are passed to the strategy, which will typically move the boxes in order to minimise overlaps. Once the layout is complete a data join is used to construct a containing g
element for each item in the bound array, and the component supplied to the layout is 'call'-ed on each element.
Each g
element has the following properties set:
layout-width
, layout-height
- the width and height of this label, as provided by the size
property.display
- set to inherit
or hidden
, based on whether the strategy has hidden this label.anchor-x
, anchor-y
- the original label location in relative coordinates to the this g
element.# layoutLabel.size(accessor)
Specifies the size for each item in the associated array. The accessor function is invoked exactly once per datum, and should return the size as an array of two values, [width, height]
. The accessor function is invoked with the current datum (d), the current index (i), and the current group (nodes). This function is invoked after the component has been rendered, and the value of the this context is the containing g
element. As a result, you can measure the size of the component if the contents are dynamic, for example, measuring the size of a text label.
# layoutLabel.position(accessor)
Specifies the position for each item in the associated array. The accessor function is invoked exactly once per datum, with the current datum (d), the current index (i), and the current group (nodes), and should return the position as an array of two values, [x, y]
.
# layoutLabel.component(component)
Specified the component that is used to render each label.
# layoutLabel.xScale(scale)
# layoutLabel.yScale(scale)
If scale is specified, sets the scale and returns the label layout component. If scale is not specified, returns the current scale.
The scales are applied to the position of each item, i.e. [x, y] -> [xScale(x), yScale(y)]
, with the default scale being an identity.
The label component uses a strategy in order to re-locate labels to avoid collisions, or perhaps hide those that overlap.
The strategy is supplied an array of objects that describe the initial location of each label, as obtained via the position
and size
properties of layout
.
Each object has the following structure:
{
hidden: ...,
x: ...,
y: ...,
width: ...,
height: ...,
}
The strategy should return an array of objects indicating the placement of each label.
The greedy strategy is a very fast way of reducing label overlap. It adds each label in sequence, selecting the position where the label has the lowest overlap with already added rectangles and is inside the container.
# fc.layoutGreedy()
Constructs a greedy strategy.
# layoutGreedy.bounds(rect)
Optionally specifies a bounding region, as a rectangle with properties of x
, y
, width
and height
. The strategy will try to keep labels within the bounds.
The simulated annealing strategy runs over a set number of iterations, choosing a different location for one label on each iteration. If that location results in a better result, it is saved for the next iteration. Otherwise, it is saved with probability inversely proportional with the iteration it is currently on. This helps it break out of local optimums, hopefully producing better output. Because of the random nature of the algorithm, it produces variable output.
# fc.layoutAnnealing()
Constructs an annealing strategy.
# layoutAnnealing.bounds(rect)
Optionally specifies a bounding region, as a rectangle with properties of x
, y
, width
and height
. The strategy will try to keep labels within the bounds.
# layoutAnnealing.temperature(integer)
# layoutAnnealing.cooling(integer)
The temperature parameter indicates the initial 'number' to use for the random probability calculation, and cooling defines the delta of the temperature between iterations. The algorithm runs for Math.ceil(temperature / cooling)
iterations.
This strategy doesn't re-position labels to reduce overlaps, instead it removes overlapping labels. This is performed iteratively, with the labels that have the greatest area of overlap removed first.
# fc.layoutRemoveOverlaps(strategy)
Constructs a removeOverlaps strategy, adapting the supplied strategy in order to remove overlaps after it has been executed.
This is a simple component that renders a label:
This component uses the layout-width
and layout-height
properties of its parent element to set its own width and height. It also uses the anchor-x
and anchor-y
properties to place the circular anchor. These properties are all set by the label layout as described above.
# fc.layoutTextLabel()
Constructs a text label component.
# textLabel.labelPadding(number)
Specifies the padding around the text.
# layoutTextLabel.value(accessor)
Specifies the text rendered by this label as an accessor function.
FAQs
A D3 layout that places labels avoiding overlaps using either a greedy or simulated annealing strategy
The npm package @d3fc/d3fc-label-layout receives a total of 2,303 weekly downloads. As such, @d3fc/d3fc-label-layout popularity was classified as popular.
We found that @d3fc/d3fc-label-layout demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 3 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
GitHub removed 27 malicious pull requests attempting to inject harmful code across multiple open source repositories, in another round of low-effort attacks.
Security News
RubyGems.org has added a new "maintainer" role that allows for publishing new versions of gems. This new permission type is aimed at improving security for gem owners and the service overall.
Security News
Node.js will be enforcing stricter semver-major PR policies a month before major releases to enhance stability and ensure reliable release candidates.