O-O-O-O-O-O-O
This library enables applications to author, revise, merge, navigate and share trusted, auditable and immutable graph-like data structures. Multi-local, granular and configurable persistence across technologies and providers. The individual persistence atoms (the blocks) are location independent and uniquely identified using cryptographic hashes. Each individual version of the graph data structure is location independent and uniquely identified using a cryptographic handle - the root.
Build
npm run clean
npm install
npm run build
Test
Note: Some of the e2e tests expect an IPFS service accessible on the local network.
Example test environment configuration:
export IPFS_API=/ip4/192.168.1.100/tcp/5001
npm run test
Storage Providers
The library can persist graph data across technologies and/or providers using a key-value format. The key is the content-identifier of the block, the value is the actual byte array fragment associated with the block. The library provides a memory based implementation, suitable for testing and development.
interface BlockStore {
put: (block: { cid: any; bytes: Uint8Array }) => Promise<void>
get: (cid: any) => Promise<Uint8Array>
}
Author
Example creating, updating in parallel and merging changes on a graph structure simulating a file system. Providing a proto-schema
is optional.
enum ObjectTypes {
FOLDER = 1,
FILE = 2,
}
enum RlshpTypes {
CONTAINS = 1,
}
enum PropTypes {
META = 1,
DATA = 2,
}
enum KeyTypes {
NAME = 1,
CONTENT = 2,
}
const { chunk } = chunkerFactory(512, compute_chunks)
const linkCodec: LinkCodec = linkCodecFactory()
const valueCodec: ValueCodec = valueCodecFactory()
const blockStore: BlockStore = memoryBlockStoreFactory()
const versionStore: VersionStore = await versionStoreFactory({
chunk,
linkCodec,
valueCodec,
blockStore,
})
const graphStore = graphStoreFactory({
chunk,
linkCodec,
valueCodec,
blockStore,
})
const graph = new Graph(versionStore, graphStore)
const tx = graph.tx()
await tx.start()
const v1 = tx.addVertex(ObjectTypes.FOLDER)
const v2 = tx.addVertex(ObjectTypes.FOLDER)
const v3 = tx.addVertex(ObjectTypes.FILE)
const e1 = await tx.addEdge(v1, v2, RlshpTypes.CONTAINS)
const e2 = await tx.addEdge(v1, v3, RlshpTypes.CONTAINS)
await tx.addVertexProp(v1, KeyTypes.NAME, 'root-folder', PropTypes.META)
await tx.addVertexProp(v2, KeyTypes.NAME, 'nested-folder', PropTypes.META)
await tx.addVertexProp(v3, KeyTypes.NAME, 'nested-file', PropTypes.META)
await tx.addVertexProp(
v2,
KeyTypes.CONTENT,
'hello world from v2',
PropTypes.DATA
)
await tx.addVertexProp(
v3,
KeyTypes.CONTENT,
'hello world from v3',
PropTypes.DATA
)
const { root: original } = await tx.commit({
comment: 'First draft',
tags: ['v0.0.1'],
})
Revise
const graphStore1 = graphStoreFactory({
chunk,
linkCodec,
valueCodec,
blockStore,
})
const g1 = new Graph(versionStore, graphStore1)
const tx1 = g1.tx()
await tx1.start()
const v10 = await tx1.getVertex(0)
const v11 = tx1.addVertex(ObjectTypes.FILE)
const e11 = await tx1.addEdge(v10, v11, RlshpTypes.CONTAINS)
await tx1.addVertexProp(
v11,
KeyTypes.NAME,
'nested-file-user-1',
PropTypes.META
)
await tx1.addVertexProp(
v11,
KeyTypes.CONTENT,
'hello world from v11',
PropTypes.DATA
)
const { root: first } = await tx1.commit({
comment: 'Revised by first user',
})
versionStore.checkout(original)
const graphStore2 = graphStoreFactory({
chunk,
linkCodec,
valueCodec,
blockStore,
})
const g2 = new Graph(versionStore, graphStore2)
const tx2 = g2.tx()
await tx2.start()
const v20 = await tx2.getVertex(0)
const v21 = tx2.addVertex(ObjectTypes.FILE)
const e21 = await tx2.addEdge(v20, v21, RlshpTypes.CONTAINS)
await tx2.addVertexProp(
v21,
KeyTypes.NAME,
'nested-file-user-2',
PropTypes.META
)
await tx2.addVertexProp(
v21,
KeyTypes.CONTENT,
'hello world from v21',
PropTypes.DATA
)
const { root: second } = await tx2.commit({
comment: 'Revised by second user',
})
Merge
const {
root: mergeRootMvr,
index: mergeIndexMvr,
blocks: mergeBlocksMvr,
} = await merge(
{
baseRoot: original,
baseStore: blockStore,
currentRoot: first,
currentStore: blockStore,
otherRoot: second,
otherStore: blockStore,
},
MergePolicyEnum.MultiValueRegistry,
chunk,
linkCodec,
valueCodec
)
const mergedFilesMvr = await query(mergeRootMvr)
assert.strictEqual(mergedFilesMvr.length, 4)
assert.strictEqual(mergedFilesMvr[0].value, 'nested-folder')
assert.strictEqual(mergedFilesMvr[1].value, 'nested-file')
assert.strictEqual(mergedFilesMvr[2].value, 'nested-file-user-2')
assert.strictEqual(mergedFilesMvr[3].value, 'nested-file-user-1')
const {
root: mergeRootLww,
index: mergeIndexLww,
blocks: mergeBlocksLww,
} = await merge(
{
baseRoot: original,
baseStore: blockStore,
currentRoot: first,
currentStore: blockStore,
otherRoot: second,
otherStore: blockStore,
},
MergePolicyEnum.LastWriterWins,
chunk,
linkCodec,
valueCodec
)
const mergedFilesLww = await query(mergeRootLww)
assert.strictEqual(mergedFilesLww.length, 3)
assert.strictEqual(mergedFilesLww[0].value, 'nested-folder')
assert.strictEqual(mergedFilesLww[1].value, 'nested-file')
assert.strictEqual(mergedFilesLww[2].value, 'nested-file-user-1')
Navigate
Filter the data and extract vertex, edge or property information
const query = async (versionRoot: Link): Promise<Prop[]> => {
const versionStore: VersionStore = await versionStoreFactory({
versionRoot,
chunk,
linkCodec,
valueCodec,
blockStore,
})
const graphStore = graphStoreFactory({
chunk,
linkCodec,
valueCodec,
blockStore,
})
const graph = new Graph(versionStore, graphStore)
const request = new RequestBuilder()
.add(PathElemType.VERTEX)
.add(PathElemType.EDGE)
.add(PathElemType.VERTEX)
.extract(KeyTypes.NAME)
.maxResults(100)
.get()
const vr: Prop[] = []
for await (const result of navigateVertices(graph, [0], request)) {
vr.push(result as Prop)
}
return vr
}
Extract coarser data fragments using data templates. Proto-language / syntax still under evaluation, hinting towards GraphQL.
const DATA_TEMPLATE = {
fileName: {
$elemType: PathElemType.EXTRACT,
$type: KeyTypes.NAME,
},
includes: {
$elemType: PathElemType.EDGE,
$type: RlshpTypes.CONTAINS,
fileName: {
$elemType: PathElemType.EXTRACT,
$type: KeyTypes.NAME,
},
},
}
const request = new RequestBuilder()
.add(PathElemType.VERTEX)
.add(PathElemType.EDGE)
.add(PathElemType.VERTEX)
.template(DATA_TEMPLATE)
.maxResults(100)
.get()
const vr: any[] = []
for await (const result of navigateVertices(graph, [0], request)) {
vr.push(result)
}
Bundle
Bundles are used to optimize data sharing. A bundle is a single large Block
containing granular Blocks
clustered according to flexible criteria. Currently is possible to create bundles that:
- make up a complete graph version
- are associated with a particular fragment of a graph (ie. required to answer a particular query)
- are associated with a particular commit
- are associated with the block index of a complete graph version (eg. to perform fast diffs)
- pack together selected blocks (such derived from diff operations)
See tests for examples.
Trust
Ability to certify the authenticity of the data associated with a particular version by signing the graph root. The author of the data is identified by its public key, stored as a property of the data version as JSON Web Key (JWK).
const { publicKey, privateKey } = await subtle.generateKey(
{
name: 'RSA-PSS',
modulusLength: 2048,
publicExponent: new Uint8Array([1, 0, 1]),
hash: 'SHA-256',
},
true,
['sign', 'verify']
)
const signer: Signer = signerFactory({ subtle, privateKey, publicKey })
const { root } = await tx.commit({
comment: 'First draft',
tags: ['v0.0.1'],
signer,
})
const { version } = await versionStore.versionGet()
const trusted = await verify({
subtle,
publicKey,
root: version.root,
signature: version.details.signature,
})
Share
Share data and history via the graph relay. There are 2 client categories:
- Plumbing client, providing fine granular APIs for history and graph bundles publish and retrieval.
- Basic client, providing a simple API for complete graph publishing and retrieval. Incremental pull & push support.
See tests in the graph relay library for examples.
Lists
Similar to graphs, the library can author, revise, merge and navigate lists. A list is a collection of items. An item is a collection of values. Items are stored as vertices in a linear (ie. visually O-O-O-O-O-O-O) graph. Item values are stored as vertex properties.
enum KeyTypes {
ID = 11,
NAME = 33,
}
const { chunk } = chunkerFactory(512, compute_chunks)
const linkCodec: LinkCodec = linkCodecFactory()
const valueCodec: ValueCodec = valueCodecFactory()
const blockStore: BlockStore = memoryBlockStoreFactory()
const versionStore: VersionStore = await versionStoreFactory({
chunk,
linkCodec,
valueCodec,
blockStore,
})
const graphStore = graphStoreFactory({
chunk,
linkCodec,
valueCodec,
blockStore,
})
const itemList: ItemList = itemListFactory(versionStore, graphStore)
const tx = itemList.tx()
await tx.start()
for (let i = 0; i < 100; i++) {
const itemValue: ItemValue = new Map<number, any>()
itemValue.set(KeyTypes.ID, i)
itemValue.set(KeyTypes.NAME, `item ${i}`)
await tx.push(itemValue)
}
const { root, index, blocks } = await tx.commit({
comment: 'First commit',
tags: ['v0.0.1'],
})
The technology is suitable for very large lists. As vertex records have a fixed size, item access by index is translated into access by offset, therefore constant - O(1). Retrieving the length of the list is also constant - O(1).
const len = await itemList.length()
assert.strictEqual(100, len)
const item0 = await itemList.get(0)
assert.strictEqual('item 0', item0.value.get(KeyTypes.NAME))
Range access is performed w/ sequential reads at byte array level.
const range: Item[] = await itemList.range(25, 50)
assert.strictEqual(50, range.length)
for (let i = 0; i < range.length; i++) {
assert.strictEqual(`item ${i + 25}`, range[i].value.get(KeyTypes.NAME))
}
Storage
Licenses
Licensed under either Apache 2.0 or MIT at your option.