Security News
Fluent Assertions Faces Backlash After Abandoning Open Source Licensing
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
@duckdb/node-api
Advanced tools
An API for using [DuckDB](https://duckdb.org/) in [Node](https://nodejs.org/).
An API for using DuckDB in Node.
This is a high-level API meant for applications. It depends on low-level bindings that adhere closely to DuckDB's C API, available separately as @duckdb/duckdb-bindings.
Some features are not yet complete:
import duckdb from '@duckdb/node-api';
console.log(duckdb.version());
console.log(duckdb.configurationOptionDescriptions());
import { DuckDBInstance } from '@duckdb/node-api';
Create with an in-memory database:
const instance = await DuckDBInstance.create(':memory:');
Equivalent to the above:
const instance = await DuckDBInstance.create();
Read from and write to a database file, which is created if needed:
const instance = await DuckDBInstance.create('my_duckdb.db');
Set configuration options:
const instance = await DuckDBInstance.create('my_duckdb.db', {
threads: '4'
});
const connection = await instance.connect();
Connections will be disconnected automatically soon after their reference is dropped, but you can also disconnect explicitly if and when you want:
connection.disconnect();
or, equivalently:
connection.close();
const result = await connection.run('from test_all_types()');
const prepared = await connection.prepare('select $1, $2, $3');
prepared.bindVarchar(1, 'duck');
prepared.bindInteger(2, 42);
prepared.bindList(3, listValue([10, 11, 12]), LIST(INTEGER));
const result = await prepared.run();
or:
const prepared = await connection.prepare('select $a, $b, $c');
prepared.bind({
'a': 'duck',
'b': 42,
'c': listValue([10, 11, 12]),
}, {
'a': VARCHAR,
'b': INTEGER,
'c': LIST(INTEGER),
});
const result = await prepared.run();
or even:
const result = await connection.run('select $a, $b, $c', {
'a': 'duck',
'b': 42,
'c': listValue([10, 11, 12]),
}, {
'a': VARCHAR,
'b': INTEGER,
'c': LIST(INTEGER),
});
Unspecified types will be inferred:
const result = await connection.run('select $a, $b, $c', {
'a': 'duck',
'b': 42,
'c': listValue([10, 11, 12]),
});
Streaming results evaluate lazily when rows are read.
const result = await connection.stream('from range(10_000)');
Get column names and types:
const columnNames = result.columnNames();
const columnTypes = result.columnTypes();
Run and read all data:
const reader = await connection.runAndReadAll('from test_all_types()');
const rows = reader.getRows();
// OR: const columns = reader.getColumns();
Stream and read up to (at least) some number of rows:
const reader = await connection.streamAndReadUntil(
'from range(5000)',
1000
);
const rows = reader.getRows();
// rows.length === 2048. (Rows are read in chunks of 2048.)
Read rows incrementally:
const reader = await connection.streamAndRead('from range(5000)');
reader.readUntil(2000);
// reader.currentRowCount === 2048 (Rows are read in chunks of 2048.)
// reader.done === false
reader.readUntil(4000);
// reader.currentRowCount === 4096
// reader.done === false
reader.readUntil(6000);
// reader.currentRowCount === 5000
// reader.done === true
Result data can be retrieved in a variety of forms:
const reader = await connection.runAndReadAll(
'from range(3) select range::int as i, 10 + i as n'
);
const rows = reader.getRows();
// [ [0, 10], [1, 11], [2, 12] ]
const rowObjects = reader.getRowObjects();
// [ { i: 0, n: 10 }, { i: 1, n: 11 }, { i: 2, n: 12 } ]
const columns = reader.getColumns();
// [ [0, 1, 2], [10, 11, 12] ]
const columnsObject = reader.getColumnsObject();
// { i: [0, 1, 2], n: [10, 11, 12] }
By default, data values that cannot be represented as JS primitives
are returned as rich JS objects; see Inspect Data Values
below.
To retrieve data in a form that can be losslessly serialized to JSON,
use the Json
forms of the above result data methods:
const reader = await connection.runAndReadAll(
'from test_all_types() select bigint, date, interval limit 2'
);
const rows = reader.getRowsJson();
// [
// [
// "-9223372036854775808",
// "5877642-06-25 (BC)",
// { "months": 0, "days": 0, "micros": "0" }
// ],
// [
// "9223372036854775807",
// "5881580-07-10",
// { "months": 999, "days": 999, "micros": "999999999" }
// ]
// ]
const rowObjects = reader.getRowObjectsJson();
// [
// {
// "bigint": "-9223372036854775808",
// "date": "5877642-06-25 (BC)",
// "interval": { "months": 0, "days": 0, "micros": "0" }
// },
// {
// "bigint": "9223372036854775807",
// "date": "5881580-07-10",
// "interval": { "months": 999, "days": 999, "micros": "999999999" }
// }
// ]
const columns = reader.getColumnsJson();
// [
// [ "-9223372036854775808", "9223372036854775807" ],
// [ "5877642-06-25 (BC)", "5881580-07-10" ],
// [
// { "months": 0, "days": 0, "micros": "0" },
// { "months": 999, "days": 999, "micros": "999999999" }
// ]
// ]
const columnsObject = reader.getColumnsObjectJson();
// {
// "bigint": [ "-9223372036854775808", "9223372036854775807" ],
// "date": [ "5877642-06-25 (BC)", "5881580-07-10" ],
// "interval": [
// { "months": 0, "days": 0, "micros": "0" },
// { "months": 999, "days": 999, "micros": "999999999" }
// ]
// }
These methods handle nested types as well:
const reader = await connection.runAndReadAll(
'from test_all_types() select int_array, struct, map, "union" limit 2'
);
const rows = reader.getRowsJson();
// [
// [
// [],
// { "a": null, "b": null },
// [],
// { "tag": "name", "value": "Frank" }
// ],
// [
// [ 42, 999, null, null, -42],
// { "a": 42, "b": "🦆🦆🦆🦆🦆🦆" },
// [
// { "key": "key1", "value": "🦆🦆🦆🦆🦆🦆" },
// { "key": "key2", "value": "goose" }
// ],
// { "tag": "age", "value": 5 }
// ]
// ]
const rowObjects = reader.getRowObjectsJson();
// [
// {
// "int_array": [],
// "struct": { "a": null, "b": null },
// "map": [],
// "union": { "tag": "name", "value": "Frank" }
// },
// {
// "int_array": [ 42, 999, null, null, -42 ],
// "struct": { "a": 42, "b": "🦆🦆🦆🦆🦆🦆" },
// "map": [
// { "key": "key1", "value": "🦆🦆🦆🦆🦆🦆" },
// { "key": "key2", "value": "goose" }
// ],
// "union": { "tag": "age", "value": 5 }
// }
// ]
const columns = reader.getColumnsJson();
// [
// [
// [],
// [42, 999, null, null, -42]
// ],
// [
// { "a": null, "b": null },
// { "a": 42, "b": "🦆🦆🦆🦆🦆🦆" }
// ],
// [
// [],
// [
// { "key": "key1", "value": "🦆🦆🦆🦆🦆🦆" },
// { "key": "key2", "value": "goose"}
// ]
// ],
// [
// { "tag": "name", "value": "Frank" },
// { "tag": "age", "value": 5 }
// ]
// ]
const columnsObject = reader.getColumnsObjectJson();
// {
// "int_array": [
// [],
// [42, 999, null, null, -42]
// ],
// "struct": [
// { "a": null, "b": null },
// { "a": 42, "b": "🦆🦆🦆🦆🦆🦆" }
// ],
// "map": [
// [],
// [
// { "key": "key1", "value": "🦆🦆🦆🦆🦆🦆" },
// { "key": "key2", "value": "goose" }
// ]
// ],
// "union": [
// { "tag": "name", "value": "Frank" },
// { "tag": "age", "value": 5 }
// ]
// }
Fetch all chunks:
const chunks = await result.fetchAllChunks();
Fetch one chunk at a time:
const chunks = [];
while (true) {
const chunk = await result.fetchChunk();
// Last chunk will have zero rows.
if (chunk.rowCount === 0) {
break;
}
chunks.push(chunk);
}
For materialized (non-streaming) results, chunks can be read by index:
const rowCount = result.rowCount;
const chunkCount = result.chunkCount;
for (let i = 0; i < chunkCount; i++) {
const chunk = result.getChunk(i);
// ...
}
Get chunk data:
const rows = chunk.getRows();
const rowObjects = chunk.getRowObjects();
const columns = chunk.getColumns();
const columnsObject = chunk.getColumnsObject();
Get chunk data (one value at a time)
const columns = [];
const columnCount = chunk.columnCount;
for (let columnIndex = 0; columnIndex < columnCount; columnIndex++) {
const columnValues = [];
const columnVector = chunk.getColumnVector(columnIndex);
const itemCount = columnVector.itemCount;
for (let itemIndex = 0; itemIndex < itemCount; itemIndex++) {
const value = columnVector.getItem(itemIndex);
columnValues.push(value);
}
columns.push(columnValues);
}
import { DuckDBTypeId } from '@duckdb/node-api';
if (columnType.typeId === DuckDBTypeId.ARRAY) {
const arrayValueType = columnType.valueType;
const arrayLength = columnType.length;
}
if (columnType.typeId === DuckDBTypeId.DECIMAL) {
const decimalWidth = columnType.width;
const decimalScale = columnType.scale;
}
if (columnType.typeId === DuckDBTypeId.ENUM) {
const enumValues = columnType.values;
}
if (columnType.typeId === DuckDBTypeId.LIST) {
const listValueType = columnType.valueType;
}
if (columnType.typeId === DuckDBTypeId.MAP) {
const mapKeyType = columnType.keyType;
const mapValueType = columnType.valueType;
}
if (columnType.typeId === DuckDBTypeId.STRUCT) {
const structEntryNames = columnType.names;
const structEntryTypes = columnType.valueTypes;
}
if (columnType.typeId === DuckDBTypeId.UNION) {
const unionMemberTags = columnType.memberTags;
const unionMemberTypes = columnType.memberTypes;
}
// For the JSON type (https://duckdb.org/docs/data/json/json_type)
if (columnType.alias === 'JSON') {
const json = JSON.parse(columnValue);
}
Every type implements toString. The result is both human-friendly and readable by DuckDB in an appropriate expression.
const typeString = columnType.toString();
import { DuckDBTypeId } from '@duckdb/node-api';
if (columnType.typeId === DuckDBTypeId.ARRAY) {
const arrayItems = columnValue.items; // array of values
const arrayString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.BIT) {
const bools = columnValue.toBools(); // array of booleans
const bits = columnValue.toBits(); // arrary of 0s and 1s
const bitString = columnValue.toString(); // string of '0's and '1's
}
if (columnType.typeId === DuckDBTypeId.BLOB) {
const blobBytes = columnValue.bytes; // Uint8Array
const blobString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.DATE) {
const dateDays = columnValue.days;
const dateString = columnValue.toString();
const { year, month, day } = columnValue.toParts();
}
if (columnType.typeId === DuckDBTypeId.DECIMAL) {
const decimalWidth = columnValue.width;
const decimalScale = columnValue.scale;
// Scaled-up value. Represented number is value/(10^scale).
const decimalValue = columnValue.value; // bigint
const decimalString = columnValue.toString();
const decimalDouble = columnValue.toDouble();
}
if (columnType.typeId === DuckDBTypeId.INTERVAL) {
const intervalMonths = columnValue.months;
const intervalDays = columnValue.days;
const intervalMicros = columnValue.micros; // bigint
const intervalString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.LIST) {
const listItems = columnValue.items; // array of values
const listString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.MAP) {
const mapEntries = columnValue.entries; // array of { key, value }
const mapString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.STRUCT) {
// { name1: value1, name2: value2, ... }
const structEntries = columnValue.entries;
const structString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.TIMESTAMP_MS) {
const timestampMillis = columnValue.milliseconds; // bigint
const timestampMillisString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.TIMESTAMP_NS) {
const timestampNanos = columnValue.nanoseconds; // bigint
const timestampNanosString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.TIMESTAMP_S) {
const timestampSecs = columnValue.seconds; // bigint
const timestampSecsString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.TIMESTAMP_TZ) {
const timestampTZMicros = columnValue.micros; // bigint
const timestampTZString = columnValue.toString();
const {
date: { year, month, day },
time: { hour, min, sec, micros },
} = columnValue.toParts();
}
if (columnType.typeId === DuckDBTypeId.TIMESTAMP) {
const timestampMicros = columnValue.micros; // bigint
const timestampString = columnValue.toString();
const {
date: { year, month, day },
time: { hour, min, sec, micros },
} = columnValue.toParts();
}
if (columnType.typeId === DuckDBTypeId.TIME_TZ) {
const timeTZMicros = columnValue.micros; // bigint
const timeTZOffset = columnValue.offset;
const timeTZString = columnValue.toString();
const {
time: { hour, min, sec, micros },
offset,
} = columnValue.toParts();
}
if (columnType.typeId === DuckDBTypeId.TIME) {
const timeMicros = columnValue.micros; // bigint
const timeString = columnValue.toString();
const { hour, min, sec, micros } = columnValue.toParts();
}
if (columnType.typeId === DuckDBTypeId.UNION) {
const unionTag = columnValue.tag;
const unionValue = columnValue.value;
const unionValueString = columnValue.toString();
}
if (columnType.typeId === DuckDBTypeId.UUID) {
const uuidHugeint = columnValue.hugeint; // bigint
const uuidString = columnValue.toString();
}
// other possible values are: null, boolean, number, bigint, or string
Converting a TIMESTAMP_TZ value to a string depends on a timezone offset. By default, this is set to the offset for the local timezone when the Node process is started.
To change it, set the timezoneOffsetInMinutes
property of DuckDBTimestampTZValue
:
DuckDBTimestampTZValue.timezoneOffsetInMinutes = -8 * 60;
const pst = DuckDBTimestampTZValue.Epoch.toString();
// 1969-12-31 16:00:00-08
DuckDBTimestampTZValue.timezoneOffsetInMinutes = +1 * 60;
const cet = DuckDBTimestampTZValue.Epoch.toString();
// 1970-01-01 01:00:00+01
Note that the timezone offset used for this string
conversion is distinct from the TimeZone
setting of DuckDB.
The following sets this offset to match the TimeZone
setting of DuckDB:
const reader = await connection.runAndReadAll(
`select (timezone(current_timestamp) / 60)::int`
);
DuckDBTimestampTZValue.timezoneOffsetInMinutes =
reader.getColumns()[0][0];
await connection.run(
`create or replace table target_table(i integer, v varchar)`
);
const appender = await connection.createAppender('main', 'target_table');
appender.appendInteger(42);
appender.appendVarchar('duck');
appender.endRow();
appender.appendInteger(123);
appender.appendVarchar('mallard');
appender.endRow();
appender.flush();
appender.appendInteger(17);
appender.appendVarchar('goose');
appender.endRow();
appender.close(); // also flushes
await connection.run(
`create or replace table target_table(i integer, v varchar)`
);
const appender = await connection.createAppender('main', 'target_table');
const chunk = DuckDBDataChunk.create([INTEGER, VARCHAR]);
chunk.setColumns([
[42, 123, 17],
['duck', 'mallad', 'goose'],
]);
// OR:
// chunk.setRows([
// [42, 'duck'],
// [123, 'mallard'],
// [17, 'goose'],
// ]);
appender.appendDataChunk(chunk);
appender.flush();
const extractedStatements = await connection.extractStatements(`
create or replace table numbers as from range(?);
from numbers where range < ?;
drop table numbers;
`);
const parameterValues = [10, 7];
const statementCount = extractedStatements.count;
for (let stmtIndex = 0; stmtIndex < statementCount; stmtIndex++) {
const prepared = await extractedStatements.prepare(stmtIndex);
let parameterCount = prepared.parameterCount;
for (let paramIndex = 1; paramIndex <= parameterCount; paramIndex++) {
prepared.bindInteger(paramIndex, parameterValues.shift());
}
const result = await prepared.run();
// ...
}
import { DuckDBPendingResultState } from '@duckdb/node-api';
async function sleep(ms) {
return new Promise((resolve) => {
setTimeout(resolve, ms);
});
}
const prepared = await connection.prepare('from range(10_000_000)');
const pending = prepared.start();
while (pending.runTask() !== DuckDBPendingResultState.RESULT_READY) {
console.log('not ready');
await sleep(1);
}
console.log('ready');
const result = await pending.getResult();
// ...
// Run to completion but don't yet retrieve any rows.
// Optionally take values to bind to SQL parameters,
// and (optionally) types of those parameters,
// either as an array (for positional parameters),
// or an object keyed by parameter name.
const result = await connection.run(sql);
const result = await connection.run(sql, values);
const result = await connection.run(sql, values, types);
// Run to completion but don't yet retrieve any rows.
// Wrap in a DuckDBDataReader for convenient data retrieval.
const reader = await connection.runAndRead(sql);
const reader = await connection.runAndRead(sql, values);
const reader = await connection.runAndRead(sql, values, types);
// Run to completion, wrap in a reader, and read all rows.
const reader = await connection.runAndReadAll(sql);
const reader = await connection.runAndReadAll(sql, values);
const reader = await connection.runAndReadAll(sql, values, types);
// Run to completion, wrap in a reader, and read at least
// the given number of rows. (Rows are read in chunks, so more than
// the target may be read.)
const reader = await connection.runAndReadUntil(sql, targetRowCount);
const reader =
await connection.runAndReadAll(sql, targetRowCount, values);
const reader =
await connection.runAndReadAll(sql, targetRowCount, values, types);
// Create a streaming result and don't yet retrieve any rows.
const result = await connection.stream(sql);
const result = await connection.stream(sql, values);
const result = await connection.stream(sql, values, types);
// Create a streaming result and don't yet retrieve any rows.
// Wrap in a DuckDBDataReader for convenient data retrieval.
const reader = await connection.streamAndRead(sql);
const reader = await connection.streamAndRead(sql, values);
const reader = await connection.streamAndRead(sql, values, types);
// Create a streaming result, wrap in a reader, and read all rows.
const reader = await connection.streamAndReadAll(sql);
const reader = await connection.streamAndReadAll(sql, values);
const reader = await connection.streamAndReadAll(sql, values, types);
// Create a streaming result, wrap in a reader, and read at least
// the given number of rows.
const reader = await connection.streamAndReadUntil(sql, targetRowCount);
const reader =
await connection.streamAndReadUntil(sql, targetRowCount, values);
const reader =
await connection.streamAndReadUntil(sql, targetRowCount, values, types);
// Prepared Statements
// Prepare a possibly-parametered SQL statement to run later.
const prepared = await connection.prepare(sql);
// Bind values to the parameters.
prepared.bind(values);
prepared.bind(values, types);
// Run the prepared statement. These mirror the methods on the connection.
const result = prepared.run();
const reader = prepared.runAndRead();
const reader = prepared.runAndReadAll();
const reader = prepared.runAndReadUntil(targetRowCount);
const result = prepared.stream();
const reader = prepared.streamAndRead();
const reader = prepared.streamAndReadAll();
const reader = prepared.streamAndReadUntil(targetRowCount);
// Pending Results
// Create a pending result.
const pending = await connection.start(sql);
const pending = await connection.start(sql, values);
const pending = await connection.start(sql, values, types);
// Create a pending, streaming result.
const pending = await connection.startStream(sql);
const pending = await connection.startStream(sql, values);
const pending = await connection.startStream(sql, values, types);
// Create a pending result from a prepared statement.
const pending = await prepared.start();
const pending = await prepared.startStream();
while (pending.runTask() !== DuckDBPendingResultState.RESULT_READY) {
// optionally sleep or do other work between tasks
}
// Retrieve the result. If not yet READY, will run until it is.
const result = await pending.getResult();
const reader = await pending.read();
const reader = await pending.readAll();
const reader = await pending.readUntil(targetRowCount);
// From a result
// Asynchronously retrieve data for all rows:
const columns = await result.getColumns();
const columnsJson = await result.getColumnsJson();
const columnsObject = await result.getColumnsObject();
const columnsObjectJson = await result.getColumnsObjectJson();
const rows = await result.getRows();
const rowsJson = await result.getRowsJson();
const rowObjects = await result.getRowObjects();
const rowObjectsJson = await result.getRowObjectsJson();
// From a reader
// First, (asynchronously) read some rows:
await reader.readAll();
// or:
await reader.readUntil(targetRowCount);
// Then, (synchronously) get result data for the rows read:
const columns = reader.getColumns();
const columnsJson = reader.getColumnsJson();
const columnsObject = reader.getColumnsObject();
const columnsObjectJson = reader.getColumnsObjectJson();
const rows = reader.getRows();
const rowsJson = reader.getRowsJson();
const rowObjects = reader.getRowObjects();
const rowObjectsJson = reader.getRowObjectsJson();
// Individual values can also be read directly:
const value = reader.value(columnIndex, rowIndex);
// Using chunks
// If desired, one or more chunks can be fetched from a result:
const chunk = await result.fetchChunk();
const chunks = await result.fetchAllChunks();
// And then data can be retrieved from each chunk:
const columnValues = chunk.getColumnValues(columnIndex);
const columns = chunk.getColumns();
const rowValues = chunk.getRowValues(rowIndex);
const rows = chunk.getRows();
// Or, values can be visited:
chunk.visitColumnValues(columnIndex,
(value, rowIndex, columnIndex, type) => { /* ... */ }
);
chunk.visitColumns((column, columnIndex, type) => { /* ... */ });
chunk.visitColumnMajor(
(value, rowIndex, columnIndex, type) => { /* ... */ }
);
chunk.visitRowValues(rowIndex,
(value, rowIndex, columnIndex, type) => { /* ... */ }
);
chunk.visitRows((row, rowIndex) => { /* ... */ });
chunk.visitRowMajor(
(value, rowIndex, columnIndex, type) => { /* ... */ }
);
// Or converted:
// The `converter` argument implements `DuckDBValueConverter`,
// which has the single method convertValue(value, type).
const columnValues = chunk.convertColumnValues(columnIndex, converter);
const columns = chunk.convertColumns(converter);
const rowValues = chunk.convertRowValues(rowIndex, converter);
const rows = chunk.convertRows(converter);
// The reader abstracts these low-level chunk manipulations
// and is recommended for most cases.
FAQs
An API for using [DuckDB](https://duckdb.org/) in [Node](https://nodejs.org/).
The npm package @duckdb/node-api receives a total of 27,571 weekly downloads. As such, @duckdb/node-api popularity was classified as popular.
We found that @duckdb/node-api demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Fluent Assertions is facing backlash after dropping the Apache license for a commercial model, leaving users blindsided and questioning contributor rights.
Research
Security News
Socket researchers uncover the risks of a malicious Python package targeting Discord developers.
Security News
The UK is proposing a bold ban on ransomware payments by public entities to disrupt cybercrime, protect critical services, and lead global cybersecurity efforts.