Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@eppo/js-client-sdk-common

Package Overview
Dependencies
Maintainers
8
Versions
85
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@eppo/js-client-sdk-common - npm Package Compare versions

Comparing version 4.5.4 to 4.6.0

1

dist/application-logger.js

@@ -8,2 +8,3 @@ "use strict";

exports.logger = (0, pino_1.default)({
// eslint-disable-next-line no-restricted-globals
level: process.env.LOG_LEVEL ?? (process.env.NODE_ENV === 'production' ? 'warn' : 'info'),

@@ -10,0 +11,0 @@ // https://getpino.io/#/docs/browser

@@ -17,2 +17,3 @@ import { BanditModelData } from './interfaces';

private readonly sharder;
evaluateBestBanditAction(subjectAttributes: ContextAttributes, actions: Record<string, ContextAttributes>, banditModel: BanditModelData): string | null;
evaluateBandit(flagKey: string, subjectKey: string, subjectAttributes: ContextAttributes, actions: Record<string, ContextAttributes>, banditModel: BanditModelData): BanditEvaluation;

@@ -24,3 +25,4 @@ private scoreActions;

private selectAction;
private getTopScore;
}
//# sourceMappingURL=bandit-evaluator.d.ts.map

34

dist/bandit-evaluator.js

@@ -11,2 +11,7 @@ "use strict";

}
evaluateBestBanditAction(subjectAttributes, actions, banditModel) {
const actionScores = this.scoreActions(subjectAttributes, actions, banditModel);
const { topAction } = this.getTopScore(actionScores);
return topAction;
}
evaluateBandit(flagKey, subjectKey, subjectAttributes, actions, banditModel) {

@@ -76,14 +81,3 @@ const actionScores = this.scoreActions(subjectAttributes, actions, banditModel);

}
// First find the action with the highest score
let currTopScore = null;
let currTopAction = null;
actionScoreEntries.forEach(([actionKey, actionScore]) => {
if (currTopScore === null ||
currTopAction === null ||
actionScore > currTopScore ||
(actionScore === currTopScore && actionKey < currTopAction)) {
currTopScore = actionScore;
currTopAction = actionKey;
}
});
const { topScore: currTopScore, topAction: currTopAction } = this.getTopScore(actionScores);
if (currTopScore === null || currTopAction === null) {

@@ -144,4 +138,20 @@ // Appease typescript with this check and extra variables

}
getTopScore(actionScores) {
const actionScoreEntries = Object.entries(actionScores);
// Find the action with the highest score, tie-breaking by name, selecting the alpha-numerically smaller key.
let topScore = null;
let topAction = null;
actionScoreEntries.forEach(([actionKey, actionScore]) => {
if (topScore === null ||
topAction === null ||
actionScore > topScore ||
(actionScore === topScore && actionKey < topAction)) {
topScore = actionScore;
topAction = actionKey;
}
});
return { topScore, topAction };
}
}
exports.BanditEvaluator = BanditEvaluator;
//# sourceMappingURL=bandit-evaluator.js.map

@@ -178,2 +178,15 @@ import { IAssignmentLogger } from '../assignment-logger';

getBanditAction(flagKey: string, subjectKey: string, subjectAttributes: BanditSubjectAttributes, actions: BanditActions, defaultValue: string): Omit<IAssignmentDetails<string>, 'evaluationDetails'>;
/**
* Evaluates the supplied actions using the first bandit associated with `flagKey` and returns the best ranked action.
*
* This method should be considered **preview** and is subject to change as requirements mature.
*
* NOTE: This method does not do any logging or assignment computation and so calling this method will have
* NO IMPACT on bandit and experiment training.
*
* Only use this method under certain circumstances (i.e. where the impact of the choice of bandit cannot be measured,
* but you want to put the "best foot forward", for example, when being web-crawled).
*
*/
getBestAction(flagKey: string, subjectAttributes: BanditSubjectAttributes, actions: BanditActions, defaultAction: string): string;
getBanditActionDetails(flagKey: string, subjectKey: string, subjectAttributes: BanditSubjectAttributes, actions: BanditActions, defaultValue: string): IAssignmentDetails<string>;

@@ -180,0 +193,0 @@ /**

@@ -271,2 +271,28 @@ "use strict";

}
/**
* Evaluates the supplied actions using the first bandit associated with `flagKey` and returns the best ranked action.
*
* This method should be considered **preview** and is subject to change as requirements mature.
*
* NOTE: This method does not do any logging or assignment computation and so calling this method will have
* NO IMPACT on bandit and experiment training.
*
* Only use this method under certain circumstances (i.e. where the impact of the choice of bandit cannot be measured,
* but you want to put the "best foot forward", for example, when being web-crawled).
*
*/
getBestAction(flagKey, subjectAttributes, actions, defaultAction) {
let result = null;
const flagBanditVariations = this.banditVariationConfigurationStore?.get(flagKey);
const banditKey = flagBanditVariations?.at(0)?.key;
if (banditKey) {
const banditParameters = this.banditModelConfigurationStore?.get(banditKey);
if (banditParameters) {
const contextualSubjectAttributes = this.ensureContextualSubjectAttributes(subjectAttributes);
const actionsWithContextualAttributes = this.ensureActionsWithContextualAttributes(actions);
result = this.banditEvaluator.evaluateBestBanditAction(contextualSubjectAttributes, actionsWithContextualAttributes, banditParameters.modelData);
}
}
return result ?? defaultAction;
}
getBanditActionDetails(flagKey, subjectKey, subjectAttributes, actions, defaultValue) {

@@ -273,0 +299,0 @@ let variation = defaultValue;

{
"name": "@eppo/js-client-sdk-common",
"version": "4.5.4",
"version": "4.6.0",
"description": "Eppo SDK for client-side JavaScript applications (base for both web and react native)",

@@ -5,0 +5,0 @@ "main": "dist/index.js",

@@ -7,2 +7,3 @@ import pino from 'pino';

export const logger = pino({
// eslint-disable-next-line no-restricted-globals
level: process.env.LOG_LEVEL ?? (process.env.NODE_ENV === 'production' ? 'warn' : 'info'),

@@ -9,0 +10,0 @@ // https://getpino.io/#/docs/browser

@@ -26,2 +26,17 @@ import { BANDIT_ASSIGNMENT_SHARDS } from './constants';

public evaluateBestBanditAction(
subjectAttributes: ContextAttributes,
actions: Record<string, ContextAttributes>,
banditModel: BanditModelData,
): string | null {
const actionScores: Record<string, number> = this.scoreActions(
subjectAttributes,
actions,
banditModel,
);
const { topAction } = this.getTopScore(actionScores);
return topAction;
}
public evaluateBandit(

@@ -144,16 +159,3 @@ flagKey: string,

// First find the action with the highest score
let currTopScore: number | null = null;
let currTopAction: string | null = null;
actionScoreEntries.forEach(([actionKey, actionScore]) => {
if (
currTopScore === null ||
currTopAction === null ||
actionScore > currTopScore ||
(actionScore === currTopScore && actionKey < currTopAction)
) {
currTopScore = actionScore;
currTopAction = actionKey;
}
});
const { topScore: currTopScore, topAction: currTopAction } = this.getTopScore(actionScores);

@@ -233,2 +235,25 @@ if (currTopScore === null || currTopAction === null) {

}
private getTopScore(actionScores: Record<string, number>): {
topScore: number | null;
topAction: string | null;
} {
const actionScoreEntries = Object.entries(actionScores);
// Find the action with the highest score, tie-breaking by name, selecting the alpha-numerically smaller key.
let topScore: number | null = null;
let topAction: string | null = null;
actionScoreEntries.forEach(([actionKey, actionScore]) => {
if (
topScore === null ||
topAction === null ||
actionScore > topScore ||
(actionScore === topScore && actionKey < topAction)
) {
topScore = actionScore;
topAction = actionKey;
}
});
return { topScore, topAction };
}
}

@@ -504,2 +504,43 @@ import { v4 as randomUUID } from 'uuid';

/**
* Evaluates the supplied actions using the first bandit associated with `flagKey` and returns the best ranked action.
*
* This method should be considered **preview** and is subject to change as requirements mature.
*
* NOTE: This method does not do any logging or assignment computation and so calling this method will have
* NO IMPACT on bandit and experiment training.
*
* Only use this method under certain circumstances (i.e. where the impact of the choice of bandit cannot be measured,
* but you want to put the "best foot forward", for example, when being web-crawled).
*
*/
getBestAction(
flagKey: string,
subjectAttributes: BanditSubjectAttributes,
actions: BanditActions,
defaultAction: string,
): string {
let result: string | null = null;
const flagBanditVariations = this.banditVariationConfigurationStore?.get(flagKey);
const banditKey = flagBanditVariations?.at(0)?.key;
if (banditKey) {
const banditParameters = this.banditModelConfigurationStore?.get(banditKey);
if (banditParameters) {
const contextualSubjectAttributes =
this.ensureContextualSubjectAttributes(subjectAttributes);
const actionsWithContextualAttributes = this.ensureActionsWithContextualAttributes(actions);
result = this.banditEvaluator.evaluateBestBanditAction(
contextualSubjectAttributes,
actionsWithContextualAttributes,
banditParameters.modelData,
);
}
}
return result ?? defaultAction;
}
getBanditActionDetails(

@@ -506,0 +547,0 @@ flagKey: string,

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is too big to display

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc