New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

@huggingface/tasks

Package Overview
Dependencies
Maintainers
3
Versions
136
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@huggingface/tasks - npm Package Compare versions

Comparing version 0.0.7 to 0.0.8

27

dist/index.d.ts

@@ -279,2 +279,6 @@ /**

name: string;
subtasks: {
type: string;
name: string;
}[];
modality: "cv";

@@ -420,2 +424,12 @@ color: "indigo";

};
"text-to-3d": {
name: string;
modality: "multimodal";
color: "yellow";
};
"image-to-3d": {
name: string;
modality: "multimodal";
color: "green";
};
other: {

@@ -430,5 +444,5 @@ name: string;

type PipelineType = keyof typeof PIPELINE_DATA;
declare const PIPELINE_TYPES: ("other" | "text-classification" | "token-classification" | "table-question-answering" | "question-answering" | "zero-shot-classification" | "translation" | "summarization" | "conversational" | "feature-extraction" | "text-generation" | "text2text-generation" | "fill-mask" | "sentence-similarity" | "text-to-speech" | "text-to-audio" | "automatic-speech-recognition" | "audio-to-audio" | "audio-classification" | "voice-activity-detection" | "depth-estimation" | "image-classification" | "object-detection" | "image-segmentation" | "text-to-image" | "image-to-text" | "image-to-image" | "image-to-video" | "unconditional-image-generation" | "video-classification" | "reinforcement-learning" | "robotics" | "tabular-classification" | "tabular-regression" | "tabular-to-text" | "table-to-text" | "multiple-choice" | "text-retrieval" | "time-series-forecasting" | "text-to-video" | "visual-question-answering" | "document-question-answering" | "zero-shot-image-classification" | "graph-ml" | "mask-generation" | "zero-shot-object-detection")[];
declare const PIPELINE_TYPES: ("other" | "text-classification" | "token-classification" | "table-question-answering" | "question-answering" | "zero-shot-classification" | "translation" | "summarization" | "conversational" | "feature-extraction" | "text-generation" | "text2text-generation" | "fill-mask" | "sentence-similarity" | "text-to-speech" | "text-to-audio" | "automatic-speech-recognition" | "audio-to-audio" | "audio-classification" | "voice-activity-detection" | "depth-estimation" | "image-classification" | "object-detection" | "image-segmentation" | "text-to-image" | "image-to-text" | "image-to-image" | "image-to-video" | "unconditional-image-generation" | "video-classification" | "reinforcement-learning" | "robotics" | "tabular-classification" | "tabular-regression" | "tabular-to-text" | "table-to-text" | "multiple-choice" | "text-retrieval" | "time-series-forecasting" | "text-to-video" | "visual-question-answering" | "document-question-answering" | "zero-shot-image-classification" | "graph-ml" | "mask-generation" | "zero-shot-object-detection" | "text-to-3d" | "image-to-3d")[];
declare const SUBTASK_TYPES: string[];
declare const PIPELINE_TYPES_SET: Set<"other" | "text-classification" | "token-classification" | "table-question-answering" | "question-answering" | "zero-shot-classification" | "translation" | "summarization" | "conversational" | "feature-extraction" | "text-generation" | "text2text-generation" | "fill-mask" | "sentence-similarity" | "text-to-speech" | "text-to-audio" | "automatic-speech-recognition" | "audio-to-audio" | "audio-classification" | "voice-activity-detection" | "depth-estimation" | "image-classification" | "object-detection" | "image-segmentation" | "text-to-image" | "image-to-text" | "image-to-image" | "image-to-video" | "unconditional-image-generation" | "video-classification" | "reinforcement-learning" | "robotics" | "tabular-classification" | "tabular-regression" | "tabular-to-text" | "table-to-text" | "multiple-choice" | "text-retrieval" | "time-series-forecasting" | "text-to-video" | "visual-question-answering" | "document-question-answering" | "zero-shot-image-classification" | "graph-ml" | "mask-generation" | "zero-shot-object-detection">;
declare const PIPELINE_TYPES_SET: Set<"other" | "text-classification" | "token-classification" | "table-question-answering" | "question-answering" | "zero-shot-classification" | "translation" | "summarization" | "conversational" | "feature-extraction" | "text-generation" | "text2text-generation" | "fill-mask" | "sentence-similarity" | "text-to-speech" | "text-to-audio" | "automatic-speech-recognition" | "audio-to-audio" | "audio-classification" | "voice-activity-detection" | "depth-estimation" | "image-classification" | "object-detection" | "image-segmentation" | "text-to-image" | "image-to-text" | "image-to-image" | "image-to-video" | "unconditional-image-generation" | "video-classification" | "reinforcement-learning" | "robotics" | "tabular-classification" | "tabular-regression" | "tabular-to-text" | "table-to-text" | "multiple-choice" | "text-retrieval" | "time-series-forecasting" | "text-to-video" | "visual-question-answering" | "document-question-answering" | "zero-shot-image-classification" | "graph-ml" | "mask-generation" | "zero-shot-object-detection" | "text-to-3d" | "image-to-3d">;

@@ -764,6 +778,9 @@ /**

declare const snippetZeroShotClassification$1: (model: ModelData) => string;
declare const snippetZeroShotImageClassification: (model: ModelData) => string;
declare const snippetBasic$1: (model: ModelData) => string;
declare const snippetFile$1: (model: ModelData) => string;
declare const snippetTextToImage$1: (model: ModelData) => string;
declare const snippetTabular: (model: ModelData) => string;
declare const snippetTextToAudio$1: (model: ModelData) => string;
declare const snippetDocumentQuestionAnswering: (model: ModelData) => string;
declare const pythonSnippets: Partial<Record<PipelineType, (model: ModelData) => string>>;

@@ -776,2 +793,5 @@ declare function getPythonInferenceSnippet(model: ModelData, accessToken: string): string;

declare const python_pythonSnippets: typeof pythonSnippets;
declare const python_snippetDocumentQuestionAnswering: typeof snippetDocumentQuestionAnswering;
declare const python_snippetTabular: typeof snippetTabular;
declare const python_snippetZeroShotImageClassification: typeof snippetZeroShotImageClassification;
declare namespace python {

@@ -783,6 +803,9 @@ export {

snippetBasic$1 as snippetBasic,
python_snippetDocumentQuestionAnswering as snippetDocumentQuestionAnswering,
snippetFile$1 as snippetFile,
python_snippetTabular as snippetTabular,
snippetTextToAudio$1 as snippetTextToAudio,
snippetTextToImage$1 as snippetTextToImage,
snippetZeroShotClassification$1 as snippetZeroShotClassification,
python_snippetZeroShotImageClassification as snippetZeroShotImageClassification,
};

@@ -789,0 +812,0 @@ }

6

package.json
{
"name": "@huggingface/tasks",
"packageManager": "pnpm@8.10.5",
"version": "0.0.7",
"version": "0.0.8",
"description": "List of ML tasks for huggingface.co/tasks",

@@ -33,5 +33,3 @@ "repository": "https://github.com/huggingface/huggingface.js.git",

"license": "MIT",
"devDependencies": {
"typescript": "^5.0.4"
},
"devDependencies": {},
"scripts": {

@@ -38,0 +36,0 @@ "lint": "eslint --quiet --fix --ext .cjs,.ts .",

@@ -438,2 +438,16 @@ export const MODALITIES = ["cv", "nlp", "audio", "tabular", "multimodal", "rl", "other"] as const;

name: "Image-to-Image",
subtasks: [
{
type: "image-inpainting",
name: "Image Inpainting",
},
{
type: "image-colorization",
name: "Image Colorization",
},
{
type: "super-resolution",
name: "Super Resolution",
},
],
modality: "cv",

@@ -625,2 +639,12 @@ color: "indigo",

},
"text-to-3d": {
name: "Text-to-3D",
modality: "multimodal",
color: "yellow",
},
"image-to-3d": {
name: "Image-to-3D",
modality: "multimodal",
color: "green",
},
other: {

@@ -627,0 +651,0 @@ name: "Other",

@@ -34,2 +34,8 @@ import type { ModelData } from "../model-data";

const inputsVisualQuestionAnswering = () =>
`{
"image": "cat.png",
"question": "What is in this image?"
}`;
const inputsQuestionAnswering = () =>

@@ -83,2 +89,7 @@ `{

const inputsTabularPrediction = () =>
`'{"Height":[11.52,12.48],"Length1":[23.2,24.0],"Length2":[25.4,26.3],"Species": ["Bream","Bream"]}'`;
const inputsZeroShotImageClassification = () => `"cats.jpg"`;
const modelInputSnippets: {

@@ -91,2 +102,3 @@ [key in PipelineType]?: (model: ModelData) => string;

conversational: inputsConversational,
"document-question-answering": inputsVisualQuestionAnswering,
"feature-extraction": inputsFeatureExtraction,

@@ -102,2 +114,4 @@ "fill-mask": inputsFillMask,

"table-question-answering": inputsTableQuestionAnswering,
"tabular-regression": inputsTabularPrediction,
"tabular-classification": inputsTabularPrediction,
"text-classification": inputsTextClassification,

@@ -112,2 +126,3 @@ "text-generation": inputsTextGeneration,

"zero-shot-classification": inputsZeroShotClassification,
"zero-shot-image-classification": inputsZeroShotImageClassification,
};

@@ -114,0 +129,0 @@

@@ -15,2 +15,18 @@ import type { ModelData } from "../model-data.js";

export const snippetZeroShotImageClassification = (model: ModelData): string =>
`def query(data):
with open(data["image_path"], "rb") as f:
img = f.read()
payload={
"parameters": data["parameters"],
"inputs": base64.b64encode(img).decode("utf-8")
}
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"image_path": ${getModelInputSnippet(model)},
"parameters": {"candidate_labels": ["cat", "dog", "llama"]},
})`;
export const snippetBasic = (model: ModelData): string =>

@@ -46,2 +62,10 @@ `def query(payload):

export const snippetTabular = (model: ModelData): string =>
`def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
response = query({
"inputs": {"data": ${getModelInputSnippet(model)}},
})`;
export const snippetTextToAudio = (model: ModelData): string => {

@@ -75,4 +99,17 @@ // Transformers TTS pipeline and api-inference-community (AIC) pipeline outputs are diverged

};
export const snippetDocumentQuestionAnswering = (model: ModelData): string =>
`def query(payload):
with open(payload["image"], "rb") as f:
img = f.read()
payload["image"] = base64.b64encode(img).decode("utf-8")
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({
"inputs": ${getModelInputSnippet(model)},
})`;
export const pythonSnippets: Partial<Record<PipelineType, (model: ModelData) => string>> = {
// Same order as in js/src/lib/interfaces/Types.ts
// Same order as in tasks/src/pipelines.ts
"text-classification": snippetBasic,

@@ -98,5 +135,9 @@ "token-classification": snippetBasic,

"image-classification": snippetFile,
"image-to-text": snippetFile,
"tabular-regression": snippetTabular,
"tabular-classification": snippetTabular,
"object-detection": snippetFile,
"image-segmentation": snippetFile,
"document-question-answering": snippetDocumentQuestionAnswering,
"image-to-text": snippetFile,
"zero-shot-image-classification": snippetZeroShotImageClassification,
};

@@ -103,0 +144,0 @@

@@ -43,8 +43,8 @@ import { type PipelineType, PIPELINE_DATA } from "../pipelines";

export const TASKS_MODEL_LIBRARIES: Record<PipelineType, ModelLibraryKey[]> = {
"audio-classification": ["speechbrain", "transformers"],
"audio-classification": ["speechbrain", "transformers", "transformers.js"],
"audio-to-audio": ["asteroid", "speechbrain"],
"automatic-speech-recognition": ["espnet", "nemo", "speechbrain", "transformers", "transformers.js"],
conversational: ["transformers"],
"depth-estimation": ["transformers"],
"document-question-answering": ["transformers"],
"depth-estimation": ["transformers", "transformers.js"],
"document-question-answering": ["transformers", "transformers.js"],
"feature-extraction": ["sentence-transformers", "transformers", "transformers.js"],

@@ -55,3 +55,3 @@ "fill-mask": ["transformers", "transformers.js"],

"image-segmentation": ["transformers", "transformers.js"],
"image-to-image": ["diffusers"],
"image-to-image": ["diffusers", "transformers.js"],
"image-to-text": ["transformers.js"],

@@ -78,4 +78,4 @@ "image-to-video": ["diffusers"],

"text-to-image": ["diffusers"],
"text-to-speech": ["espnet", "tensorflowtts", "transformers"],
"text-to-audio": ["transformers"],
"text-to-speech": ["espnet", "tensorflowtts", "transformers", "transformers.js"],
"text-to-audio": ["transformers", "transformers.js"],
"text-to-video": ["diffusers"],

@@ -95,7 +95,9 @@ "text2text-generation": ["transformers", "transformers.js"],

"unconditional-image-generation": ["diffusers"],
"visual-question-answering": ["transformers"],
"visual-question-answering": ["transformers", "transformers.js"],
"voice-activity-detection": [],
"zero-shot-classification": ["transformers", "transformers.js"],
"zero-shot-image-classification": ["transformers", "transformers.js"],
"zero-shot-object-detection": ["transformers"],
"zero-shot-object-detection": ["transformers", "transformers.js"],
"text-to-3d": [],
"image-to-3d": [],
};

@@ -168,2 +170,4 @@

"zero-shot-object-detection": getData("zero-shot-object-detection", placeholder),
"text-to-3d": getData("text-to-3d", placeholder),
"image-to-3d": getData("image-to-3d", placeholder),
} as const;

@@ -170,0 +174,0 @@

@@ -35,2 +35,12 @@ This task covers guides on both [text-generation](https://huggingface.co/models?pipeline_tag=text-generation&sort=downloads) and [text-to-text generation](https://huggingface.co/models?pipeline_tag=text2text-generation&sort=downloads) models. Popular large language models that are used for chats or following instructions are also covered in this task. You can find the list of selected open-source large language models [here](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), ranked by their performance scores.

## Language Model Variants
When it comes to text generation, the underlying language model can come in several types:
- **Base models:** refers to plain language models like [Mistral 7B](mistralai/Mistral-7B-v0.1) and [Llama-2-70b](https://huggingface.co/meta-llama/Llama-2-70b-hf). These models are good for fine-tuning and few-shot prompting.
- **Instruction-trained models:** these models are trained in a multi-task manner to follow a broad range of instructions like "Write me a recipe for chocolate cake". Models like [Flan-T5](https://huggingface.co/google/flan-t5-xl), [Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), and [falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) are examples of instruction-trained models. In general, instruction-trained models will produce better responses to instructions than base models.
- **Human feedback models:** these models extend base and instruction-trained models by incorporating human feedback that rates the quality of the generated text according to criteria like [helpfulness, honesty, and harmlessness](https://arxiv.org/abs/2112.00861). The human feedback is then combined with an optimization technique like reinforcement learning to align the original model to be closer with human preferences. The overall methodology is often called [Reinforcement Learning from Human Feedback](https://huggingface.co/blog/rlhf), or RLHF for short. [Llama2-Chat](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) is an open-source model aligned through human feedback.
## Inference

@@ -37,0 +47,0 @@

Sorry, the diff of this file is too big to display

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc