Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@kkitahara/linear-algebra

Package Overview
Dependencies
Maintainers
1
Versions
15
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@kkitahara/linear-algebra

ECMAScript modules for exactly manipulating vectors and matrices of which elements are real or complex numbers of the form (p / q)sqrt(b).

  • 2.1.3
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

JavaScript Style Guide license pipeline status coverage report version bundle size downloads per week downloads per month downloads per year downloads total

LinearAlgebra

ECMAScript modules for exactly manipulating vectors and matrices of which elements are real or complex numbers of the form (p / q)sqrt(b), where p is an integer, q is a positive (non-zero) integer, and b is a positive, square-free integer.

Installation

npm install @kkitahara/linear-algebra @kkitahara/complex-algebra @kkitahara/real-algebra

Examples

Complex linear algebra

import { ExactRealAlgebra as RealAlgebra } from '@kkitahara/real-algebra'
import { ComplexAlgebra } from '@kkitahara/complex-algebra'
import { LinearAlgebra } from '@kkitahara/linear-algebra'
let r = new RealAlgebra()
let c = new ComplexAlgebra(r)
let l = new LinearAlgebra(c)
let m1, m2, m3

Generate a new matrix (since v2.0.0)

m1 = l.$(1, 0, 0, 1)
m1.toString() // '(1, 0, 0, 1)'

m1 = l.$(r.$(1, 2, 5), c.$(0, 1), c.$(0, -1), 1)
m1.toString() // '((1 / 2)sqrt(5), i(1), i(-1), 1)'

// Some Array methods can be used
m1 = l.$(r.$(1, 2, 5), c.$(0, 1), c.$(0, -1), 1)
m1.push(c.$(3))
m1.toString() // '((1 / 2)sqrt(5), i(1), i(-1), 1, 3)'

Set and get the dimension

m1 = l.$(1, 0, 0, 1)

// 2 x 2 matix
m1.setDim(2, 2)
// number of rows
m1.getDim()[0] // 2
// number of columns
m1.getDim()[1] // 2
// elements are stored in row-major order
m1.toString() // '(1, 0,\n 0, 1)'

// 1 x 4 matix
m1.setDim(1, 4)
m1.getDim()[0] // 1
m1.getDim()[1] // 4
m1.toString() // '(1, 0, 0, 1)'

// 4 x 1 matix
m1.setDim(4, 1)
m1.getDim()[0] // 4
m1.getDim()[1] // 1
m1.toString() // '(1,\n 0,\n 0,\n 1)'

// 3 x 1 matix (inconsistent dimension)
m1.setDim(3, 1)
// throws an Error when getDim is called
m1.getDim() // Error

// 2 x 0 (0 means auto)
m1.setDim(2, 0)
m1.getDim()[0] // 2
m1.getDim()[1] // 2

// 0 x 1 (0 means auto)
m1.setDim(0, 1)
m1.getDim()[0] // 4
m1.getDim()[1] // 1

// 0 x 0 (this is an adaptive matrix, since v2.0.0)
m1.setDim(0, 0)
m1.isAdaptive() // true
m1.getDim() // Error

// matrices are adaptive by default
m1 = l.$(1, 0, 0, 1)
m1.isAdaptive() // true

:warning: matrix elements are stored in row-major order.

Copy (generate a new object)

m1 = l.$(1, 0, 0, 1).setDim(2, 2)
m2 = l.copy(m1)
m2.toString() // '(1, 0,\n 0, 1)'
m2.getDim()[0] // 2
m2.getDim()[1] // 2

Equality

m1 = l.$(1, 0, 0, 1).setDim(2, 2)
m2 = l.$(1, 0, 0, 1).setDim(2, 2)
m3 = l.$(1, 0, 0, -1).setDim(2, 2)
l.eq(m1, m2) // true
l.eq(m1, m3) // false

// matrices of different dimension are considered to be not equal
m1 = l.$(1, 0, 0, 1).setDim(2, 2)
m2 = l.$(1, 0, 0, 1).setDim(1, 4)
l.eq(m1, m2) // false

// here, `m1` is adaptive
m1 = l.$(1, 0, 0, 1)
m2 = l.$(1, 0, 0, 1).setDim(1, 4)
m3 = l.$(1, 0, 0, 1).setDim(4, 1)
l.eq(m1, m2) // true
l.eq(m1, m3) // true
l.eq(m2, m3) // false

Inequality

m1 = l.$(1, 0, 0, 1).setDim(2, 2)
m2 = l.$(1, 0, 0, 1).setDim(2, 2)
m3 = l.$(1, 0, 0, -1).setDim(2, 2)
l.ne(m1, m2) // false
l.ne(m1, m3) // true

// matrices of different dimension are considered to be not equal
m1 = l.$(1, 0, 0, 1).setDim(2, 2)
m2 = l.$(1, 0, 0, 1).setDim(1, 4)
l.ne(m1, m2) // true

// here, `m1` is adaptive
m1 = l.$(1, 0, 0, 1)
m2 = l.$(1, 0, 0, 1).setDim(1, 4)
m3 = l.$(1, 0, 0, 1).setDim(4, 1)
l.ne(m1, m2) // false
l.ne(m1, m3) // false
l.ne(m2, m3) // true

isZero

m1 = l.$(1, 0, 0, 1).setDim(2, 2)
m2 = l.$(0, 0, 0, 0).setDim(2, 2)
l.isZero(m1) // false
l.isZero(m2) // true

isInteger (since v1.1.0)

m1 = l.$(1, r.$(4, 2), -3, 4).setDim(2, 2)
m2 = l.$(1, r.$(1, 2), -3, 4).setDim(2, 2)
l.isInteger(m1) // true
l.isInteger(m2) // false

Element-wise addition

m1 = l.$(1, 2, 3, 4)
m2 = l.$(1, 3, 1, 3)
// new object is generated
m3 = l.add(m1, m2)
m3.toString() // '(2, 5, 4, 7)'

In-place element-wise addition

m1 = l.$(1, 2, 3, 4)
m2 = l.$(1, 3, 1, 3)
// new object is not generated
m1 = l.iadd(m1, m2)
m1.toString() // '(2, 5, 4, 7)'

Element-wise subtraction

m1 = l.$(1, 2, 3, 4)
m2 = l.$(1, 3, 1, 3)
// new object is generated
m3 = l.sub(m1, m2)
m3.toString() // '(0, -1, 2, 1)'

In-place element-wise subtraction

m1 = l.$(1, 2, 3, 4)
m2 = l.$(1, 3, 1, 3)
// new object is not generated
m1 = l.isub(m1, m2)
m1.toString() // '(0, -1, 2, 1)'

Element-wise multiplication

m1 = l.$(1, 2, 3, 4)
m2 = l.$(1, 3, 1, 3)
// new object is generated
m3 = l.mul(m1, m2)
m3.toString() // '(1, 6, 3, 12)'

In-place element-wise multiplication

m1 = l.$(1, 2, 3, 4)
m2 = l.$(1, 3, 1, 3)
// new object is not generated
m1 = l.imul(m1, m2)
m1.toString() // '(1, 6, 3, 12)'

Element-wise division

m1 = l.$(1, 2, 3, 4)
m2 = l.$(1, 3, 1, 3)
// new object is generated
m3 = l.div(m1, m2)
m3.toString() // '(1, 2 / 3, 3, 4 / 3)'

In-place element-wise division

m1 = l.$(1, 2, 3, 4)
m2 = l.$(1, 3, 1, 3)
// new object is not generated
m1 = l.idiv(m1, m2)
m1.toString() // '(1, 2 / 3, 3, 4 / 3)'

Scalar multiplication

m1 = l.$(1, 2, 3, 4)
// new object is generated
m2 = l.smul(m1, r.$(1, 2))
m2.toString() // '(1 / 2, 1, 3 / 2, 2)'

In-place scalar multiplication

m1 = l.$(1, 2, 3, 4)
// new object is not generated
m1 = l.ismul(m1, r.$(1, 2))
m1.toString() // '(1 / 2, 1, 3 / 2, 2)'

Scalar multiplication by -1

m1 = l.$(1, 2, 3, 4)
// new object is generated
m2 = l.neg(m1)
m2.toString() // '(-1, -2, -3, -4)'

In-place scalar multiplication by -1

m1 = l.$(1, 2, 3, 4)
// new object is not generated
m1 = l.ineg(m1)
m1.toString() // '(-1, -2, -3, -4)'

Scalar division (since v2.0.0)

m1 = l.$(1, 2, 3, 4)
// new object is generated
m2 = l.sdiv(m1, 2)
m2.toString() // '(1 / 2, 1, 3 / 2, 2)'

In-place scalar division (since v2.0.0)

m1 = l.$(1, 2, 3, 4)
// new object is not generated
m1 = l.isdiv(m1, 2)
m1.toString() // '(1 / 2, 1, 3 / 2, 2)'

Complex conjugate

m1 = l.$(1, c.$(0, 2), 3, c.$(0, 4))
// new object is generated
m2 = l.cjg(m1)
m2.toString() // '(1, i(-2), 3, i(-4))'

In-place evaluation of the complex conjugate

m1 = l.$(1, c.$(0, 2), 3, c.$(0, 4))
// new object is not generated
m1 = l.icjg(m1)
m1.toString() // '(1, i(-2), 3, i(-4))'

Transpose

m1 = l.$(1, 2, 3, 4).setDim(2, 2)
// new object is generated
m2 = l.transpose(m1)
m2.toString() // '(1, 3,\n 2, 4)'

In-place evaluation of the transpose

m1 = l.$(1, 2, 3, 4).setDim(2, 2)
// new object is not generated
m1 = l.itranspose(m1)
m1.toString() // '(1, 3,\n 2, 4)'

Conjugate transpose (Hermitian transpose)

m1 = l.$(1, c.$(0, 2), 3, c.$(0, 4)).setDim(2, 2)
// new object is generated
m2 = l.cjgTranspose(m1)
m2.toString() // '(1, 3,\n i(-2), i(-4))'

In-place evaluation of the conjugate transpose

m1 = l.$(1, c.$(0, 2), 3, c.$(0, 4)).setDim(2, 2)
// new object is not generated
m1 = l.icjgTranspose(m1)
m1.toString() // '(1, 3,\n i(-2), i(-4))'

Dot product

m1 = l.$(1, c.$(0, 2))
m2 = l.$(c.$(0, 3), 2)
l.dot(m1, m2).toString() // 'i(-1)'

Square of the absolute value (Frobenius norm)

m1 = l.$(1, c.$(0, 2))
let a = l.abs2(m1)
a.toString() // '5'
// return value is not a complex number (but a real number)
a.re // undefined
a.im // undefined

Matrix multiplication

m1 = l.$(1, 2, 3, 4).setDim(2, 2)
m2 = l.$(1, 3, 1, 3).setDim(2, 2)
m3 = l.mmul(m1, m2)
m3.toString() // '(3, 9,\n 7, 21)'

LU-factorisation

m1 = l.$(1, 2, 3, 4).setDim(2, 2)
// new object is generated
m2 = l.lup(m1)

In-place LU-factorisation

m1 = l.$(1, 2, 3, 4).setDim(2, 2)
// new object is not generated
m1 = l.ilup(m1)

Solving a linear equation

m1 = l.$(1, 2, 3, 4).setDim(2, 2)
m2 = l.$(1, 2, 3, 4).setDim(2, 2)

// m1 m3 = m2, new object is generated
m3 = l.solve(l.lup(m1), m2)
m3.toString() // '(1, 0,\n 0, 1)'

// m3 m1 = m2, new object is generated
m3 = l.solve(m2, l.lup(m1))
m3.toString() // '(1, 0,\n 0, 1)'

Solving a linear equation in-place

m1 = l.$(1, 2, 3, 4).setDim(2, 2)
m2 = l.$(1, 2, 3, 4).setDim(2, 2)

// m1 m3 = m2, new object is not generated
m2 = l.isolve(l.lup(m1), m2)
m2.toString() // '(1, 0,\n 0, 1)'

m2 = l.$(1, 2, 3, 4).setDim(2, 2)

// m3 m1 = m2, new object is not generated
m2 = l.isolve(m2, l.lup(m1))
m2.toString() // '(1, 0,\n 0, 1)'

Determinant

m1 = l.$(1, 2, 3, 4).setDim(2, 2)
m2 = l.lup(m1)
// det method supports only LU-factorised matrices
let det = l.det(m2)
det.toString() // '-2'

JSON (stringify and parse)

m1 = l.$(1, r.$(2, 3, 5), 3, c.$(0, r.$(4, 5, 3))).setDim(2, 2)
let str = JSON.stringify(m1)
m2 = JSON.parse(str, l.reviver)
l.eq(m1, m2) // true

Real linear algebra

If complex numbers are not necessary, you can use RealAlgebra instead of ComplexAlgebra.

import { ExactRealAlgebra as RealAlgebra } from '@kkitahara/real-algebra'
import { LinearAlgebra } from '@kkitahara/linear-algebra'
let r = new RealAlgebra()
let l = new LinearAlgebra(r)

Numerical real/complex linear algebra

You can work with built-in numbers if you use

import { RealAlgebra } from '@kkitahara/real-algebra'

instead of ExactRealAlgebra. See the documents of @kkitahara/real-algebra for more details.

ESDoc documents

For more examples, see ESDoc documents:

cd node_modules/@kkitahara/linear-algebra
npm install --only=dev
npm run doc

and open doc/index.html in your browser.

LICENSE

© 2019 Koichi Kitahara
Apache 2.0

Keywords

FAQs

Package last updated on 19 Jun 2019

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc