New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

@livekit/agents-plugin-silero

Package Overview
Dependencies
Maintainers
0
Versions
11
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@livekit/agents-plugin-silero - npm Package Compare versions

Comparing version 0.4.6 to 0.5.0

dist/index.cjs

9

dist/index.js

@@ -1,5 +0,6 @@

// SPDX-FileCopyrightText: 2024 LiveKit, Inc.
//
// SPDX-License-Identifier: Apache-2.0
export { VAD, VADStream } from './vad.js';
import { VAD, VADStream } from "./vad.js";
export {
VAD,
VADStream
};
//# sourceMappingURL=index.js.map

@@ -1,69 +0,68 @@

// SPDX-FileCopyrightText: 2024 LiveKit, Inc.
//
// SPDX-License-Identifier: Apache-2.0
import { InferenceSession, Tensor } from 'onnxruntime-node';
export const newInferenceSession = (forceCPU) => {
return InferenceSession.create(new URL('silero_vad.onnx', import.meta.url).pathname, {
interOpNumThreads: 1,
intraOpNumThreads: 1,
executionMode: 'sequential',
executionProviders: forceCPU ? [{ name: 'cpu' }] : undefined,
});
import { fileURLToPath } from "node:url";
import { InferenceSession, Tensor } from "onnxruntime-node";
const newInferenceSession = (forceCPU) => {
return InferenceSession.create(fileURLToPath(new URL("silero_vad.onnx", import.meta.url).href), {
interOpNumThreads: 1,
intraOpNumThreads: 1,
executionMode: "sequential",
executionProviders: forceCPU ? [{ name: "cpu" }] : void 0
});
};
export class OnnxModel {
#session;
#sampleRate;
#windowSizeSamples;
#contextSize;
#sampleRateNd;
#context;
// #state: Float32Array;
#rnnState;
#inputBuffer;
constructor(session, sampleRate) {
this.#session = session;
this.#sampleRate = sampleRate;
switch (sampleRate) {
case 8000:
this.#windowSizeSamples = 256;
this.#contextSize = 32;
break;
case 16000:
this.#windowSizeSamples = 512;
this.#contextSize = 64;
break;
}
this.#sampleRateNd = BigInt64Array.from([BigInt(sampleRate)]);
this.#context = new Float32Array(this.#contextSize);
this.#rnnState = new Float32Array(2 * 1 * 128);
this.#inputBuffer = new Float32Array(this.#contextSize + this.#windowSizeSamples);
class OnnxModel {
#session;
#sampleRate;
#windowSizeSamples;
#contextSize;
#sampleRateNd;
#context;
// #state: Float32Array;
#rnnState;
#inputBuffer;
constructor(session, sampleRate) {
this.#session = session;
this.#sampleRate = sampleRate;
switch (sampleRate) {
case 8e3:
this.#windowSizeSamples = 256;
this.#contextSize = 32;
break;
case 16e3:
this.#windowSizeSamples = 512;
this.#contextSize = 64;
break;
}
get sampleRate() {
return this.#sampleRate;
}
get windowSizeSamples() {
return this.#windowSizeSamples;
}
get contextSize() {
return this.#contextSize;
}
async run(x) {
this.#inputBuffer.set(this.#context, 0);
this.#inputBuffer.set(x, this.#contextSize);
return await this.#session
.run({
input: new Tensor('float32', this.#inputBuffer, [
1,
this.#contextSize + this.#windowSizeSamples,
]),
state: new Tensor('float32', this.#rnnState, [2, 1, 128]),
sr: new Tensor('int64', this.#sampleRateNd),
})
.then((result) => {
// this.#state = result.output.data as Float32Array,
this.#context = this.#inputBuffer.subarray(0, this.#contextSize);
return result.output.data.at(0);
});
}
this.#sampleRateNd = BigInt64Array.from([BigInt(sampleRate)]);
this.#context = new Float32Array(this.#contextSize);
this.#rnnState = new Float32Array(2 * 1 * 128);
this.#inputBuffer = new Float32Array(this.#contextSize + this.#windowSizeSamples);
}
get sampleRate() {
return this.#sampleRate;
}
get windowSizeSamples() {
return this.#windowSizeSamples;
}
get contextSize() {
return this.#contextSize;
}
async run(x) {
this.#inputBuffer.set(this.#context, 0);
this.#inputBuffer.set(x, this.#contextSize);
return await this.#session.run({
input: new Tensor("float32", this.#inputBuffer, [
1,
this.#contextSize + this.#windowSizeSamples
]),
state: new Tensor("float32", this.#rnnState, [2, 1, 128]),
sr: new Tensor("int64", this.#sampleRateNd)
}).then((result) => {
this.#context = this.#inputBuffer.subarray(0, this.#contextSize);
return result.output.data.at(0);
});
}
}
export {
OnnxModel,
newInferenceSession
};
//# sourceMappingURL=onnx_model.js.map

@@ -51,3 +51,3 @@ /// <reference path="../src/onnxruntime.d.ts" />

*/
static load(opts?: VADOptions): Promise<VAD>;
static load(opts?: Partial<VADOptions>): Promise<VAD>;
stream(): VADStream;

@@ -54,0 +54,0 @@ }

@@ -1,250 +0,267 @@

// SPDX-FileCopyrightText: 2024 LiveKit, Inc.
//
// SPDX-License-Identifier: Apache-2.0
import { ExpFilter, VADEventType, VADStream as baseStream, VAD as baseVAD, log, mergeFrames, } from '@livekit/agents';
import { AudioFrame, AudioResampler, AudioResamplerQuality } from '@livekit/rtc-node';
import { OnnxModel, newInferenceSession } from './onnx_model.js';
const SLOW_INFERENCE_THRESHOLD = 200; // late by 200ms
import {
ExpFilter,
VADEventType,
VADStream as baseStream,
VAD as baseVAD,
log,
mergeFrames
} from "@livekit/agents";
import { AudioFrame, AudioResampler, AudioResamplerQuality } from "@livekit/rtc-node";
import { OnnxModel, newInferenceSession } from "./onnx_model.js";
const SLOW_INFERENCE_THRESHOLD = 200;
const defaultVADOptions = {
minSpeechDuration: 50,
minSilenceDuration: 250,
prefixPaddingDuration: 500,
maxBufferedSpeech: 60000,
activationThreshold: 0.5,
sampleRate: 16000,
forceCPU: true,
minSpeechDuration: 50,
minSilenceDuration: 250,
prefixPaddingDuration: 500,
maxBufferedSpeech: 6e4,
activationThreshold: 0.5,
sampleRate: 16e3,
forceCPU: true
};
export class VAD extends baseVAD {
#session;
#opts;
constructor(session, opts) {
super({ updateInterval: 32 });
this.#session = session;
this.#opts = opts;
}
/**
* Load and initialize the Silero VAD model.
*
* This method loads the ONNX model and prepares it for inference. When options are not provided,
* sane defaults are used.
*
* @remarks
* This method may take time to load the model into memory.
* It is recommended to call this method inside your prewarm mechanism.
*
* @example
* ```ts
* export default defineAgent({
* prewarm: async (proc: JobProcess) => {
* proc.userData.vad = await VAD.load();
* },
* entry: async (ctx: JobContext) => {
* const vad = ctx.proc.userData.vad! as VAD;
* // the rest of your agent logic
* },
* });
* ```
*
* @param options -
* @returns Promise\<{@link VAD}\>: An instance of the VAD class ready for streaming.
*/
static async load(opts = defaultVADOptions) {
const session = await newInferenceSession(opts.forceCPU);
return new VAD(session, opts);
}
stream() {
return new VADStream(this.#opts, new OnnxModel(this.#session, this.#opts.sampleRate));
}
class VAD extends baseVAD {
#session;
#opts;
constructor(session, opts) {
super({ updateInterval: 32 });
this.#session = session;
this.#opts = opts;
}
/**
* Load and initialize the Silero VAD model.
*
* This method loads the ONNX model and prepares it for inference. When options are not provided,
* sane defaults are used.
*
* @remarks
* This method may take time to load the model into memory.
* It is recommended to call this method inside your prewarm mechanism.
*
* @example
* ```ts
* export default defineAgent({
* prewarm: async (proc: JobProcess) => {
* proc.userData.vad = await VAD.load();
* },
* entry: async (ctx: JobContext) => {
* const vad = ctx.proc.userData.vad! as VAD;
* // the rest of your agent logic
* },
* });
* ```
*
* @param options -
* @returns Promise\<{@link VAD}\>: An instance of the VAD class ready for streaming.
*/
static async load(opts = {}) {
const mergedOpts = { ...defaultVADOptions, ...opts };
const session = await newInferenceSession(mergedOpts.forceCPU);
return new VAD(session, mergedOpts);
}
stream() {
return new VADStream(this.#opts, new OnnxModel(this.#session, this.#opts.sampleRate));
}
}
export class VADStream extends baseStream {
#opts;
#model;
#task;
#expFilter = new ExpFilter(0.35);
#extraInferenceTime = 0;
#logger = log();
constructor(opts, model) {
super();
this.#opts = opts;
this.#model = model;
this.#task = new Promise(async () => {
let inferenceData = new Float32Array(this.#model.windowSizeSamples);
// a copy is exposed to the user in END_OF_SPEECH
let speechBuffer = null;
let speechBufferMaxReached = false;
let speechBufferIndex = 0;
// "pub" means public, these values are exposed to the users through events
let pubSpeaking = false;
let pubSpeechDuration = 0;
let pubSilenceDuration = 0;
let pubCurrentSample = 0;
let pubTimestamp = 0;
let pubSampleRate = 0;
let pubPrefixPaddingSamples = 0; // size in samples of padding data
let speechThresholdDuration = 0;
let silenceThresholdDuration = 0;
let inputFrames = [];
let inferenceFrames = [];
let resampler = null;
// used to avoid drift when the sampleRate ratio is not an integer
let inputCopyRemainingFrac = 0.0;
for await (const frame of this.input) {
if (typeof frame === 'symbol') {
continue; // ignore flush sentinel for now
}
if (!pubSampleRate || !speechBuffer) {
pubSampleRate = frame.sampleRate;
pubPrefixPaddingSamples = Math.trunc((this.#opts.prefixPaddingDuration * pubSampleRate) / 1000);
speechBuffer = new Int16Array(this.#opts.maxBufferedSpeech * pubSampleRate + pubPrefixPaddingSamples);
if (this.#opts.sampleRate !== pubSampleRate) {
// resampling needed: the input sample rate isn't the same as the model's
// sample rate used for inference
resampler = new AudioResampler(pubSampleRate, this.#opts.sampleRate, 1, AudioResamplerQuality.QUICK);
}
}
else if (frame.sampleRate !== pubSampleRate) {
this.#logger.error('a frame with a different sample rate was already published');
continue;
}
inputFrames.push(frame);
if (resampler) {
inferenceFrames.push(...resampler.push(frame));
}
else {
inferenceFrames.push(frame);
}
while (true) {
const startTime = process.hrtime.bigint();
const availableInferenceSamples = inferenceFrames
.map((x) => x.samplesPerChannel)
.reduce((acc, x) => acc + x, 0);
if (availableInferenceSamples < this.#model.windowSizeSamples) {
break; // not enough samples to run inference
}
const inputFrame = mergeFrames(inputFrames);
const inferenceFrame = mergeFrames(inferenceFrames);
// convert data to f32
inferenceData = Float32Array.from(inferenceFrame.data.subarray(0, this.#model.windowSizeSamples), (x) => x / 32767);
const p = await this.#model
.run(inferenceData)
.then((data) => this.#expFilter.apply(1, data));
const windowDuration = (this.#model.windowSizeSamples / this.#opts.sampleRate) * 1000;
pubCurrentSample += this.#model.windowSizeSamples;
pubTimestamp += windowDuration;
const resamplingRatio = pubSampleRate / this.#model.sampleRate;
const toCopy = this.#model.windowSizeSamples * resamplingRatio + inputCopyRemainingFrac;
const toCopyInt = Math.trunc(toCopy);
inputCopyRemainingFrac = toCopy - toCopyInt;
// copy the inference window to the speech buffer
const availableSpace = speechBuffer.length - speechBufferIndex;
const toCopyBuffer = Math.min(this.#model.windowSizeSamples, availableSpace);
if (toCopyBuffer > 0) {
speechBuffer.set(inputFrame.data.subarray(0, toCopyBuffer), speechBufferIndex);
speechBufferIndex += toCopyBuffer;
}
else if (!speechBufferMaxReached) {
speechBufferMaxReached = true;
this.#logger.warn('maxBufferedSpeech reached, ignoring further data for the current speech input');
}
const inferenceDuration = Number((process.hrtime.bigint() - startTime) / BigInt(1000000));
this.#extraInferenceTime = Math.max(0, this.#extraInferenceTime + inferenceDuration - windowDuration);
if (this.#extraInferenceTime > SLOW_INFERENCE_THRESHOLD) {
this.#logger
.child({ delay: this.#extraInferenceTime })
.warn('inference is slower than realtime');
}
if (pubSpeaking) {
pubSpeechDuration += inferenceDuration;
}
else {
pubSilenceDuration += inferenceDuration;
}
this.queue.put({
type: VADEventType.INFERENCE_DONE,
samplesIndex: pubCurrentSample,
timestamp: pubTimestamp,
silenceDuration: pubSilenceDuration,
speechDuration: pubSpeechDuration,
probability: p,
inferenceDuration,
frames: [
new AudioFrame(inputFrame.data.subarray(0, toCopyInt), pubSampleRate, 1, toCopyInt),
],
speaking: pubSpeaking,
});
const resetWriteCursor = () => {
if (!speechBuffer)
throw new Error('speechBuffer is empty');
if (speechBufferIndex <= pubPrefixPaddingSamples) {
return;
}
const paddingData = speechBuffer.subarray(speechBufferIndex - pubPrefixPaddingSamples, speechBufferIndex);
speechBuffer.set(paddingData, 0);
speechBufferIndex = pubPrefixPaddingSamples;
speechBufferMaxReached = false;
};
const copySpeechBuffer = () => {
if (!speechBuffer)
throw new Error('speechBuffer is empty');
return new AudioFrame(speechBuffer.subarray(0, speechBufferIndex), pubSampleRate, 1, speechBufferIndex);
};
if (p > this.#opts.activationThreshold) {
speechThresholdDuration += windowDuration;
silenceThresholdDuration = 0;
if (!pubSpeaking && speechThresholdDuration >= this.#opts.minSpeechDuration) {
pubSpeaking = true;
pubSilenceDuration = 0;
pubSpeechDuration = speechThresholdDuration;
this.queue.put({
type: VADEventType.START_OF_SPEECH,
samplesIndex: pubCurrentSample,
timestamp: pubTimestamp,
silenceDuration: pubSilenceDuration,
speechDuration: pubSpeechDuration,
probability: p,
inferenceDuration,
frames: [copySpeechBuffer()],
speaking: pubSpeaking,
});
}
}
else {
silenceThresholdDuration += windowDuration;
speechThresholdDuration = 0;
if (!pubSpeaking) {
resetWriteCursor();
}
if (pubSpeaking && silenceThresholdDuration > this.#opts.minSilenceDuration) {
pubSpeaking = false;
pubSpeechDuration = 0;
pubSilenceDuration = silenceThresholdDuration;
this.queue.put({
type: VADEventType.END_OF_SPEECH,
samplesIndex: pubCurrentSample,
timestamp: pubTimestamp,
silenceDuration: pubSilenceDuration,
speechDuration: pubSpeechDuration,
probability: p,
inferenceDuration,
frames: [copySpeechBuffer()],
speaking: pubSpeaking,
});
resetWriteCursor();
}
}
inputFrames = [];
inferenceFrames = [];
if (inputFrame.data.length > toCopyInt) {
const data = inputFrame.data.subarray(toCopyInt);
inputFrames.push(new AudioFrame(data, pubSampleRate, 1, Math.trunc(data.length / 2)));
}
if (inferenceFrame.data.length > this.#model.windowSizeSamples) {
const data = inferenceFrame.data.subarray(this.#model.windowSizeSamples);
inferenceFrames.push(new AudioFrame(data, this.#opts.sampleRate, 1, Math.trunc(data.length / 2)));
}
}
class VADStream extends baseStream {
#opts;
#model;
#task;
#expFilter = new ExpFilter(0.35);
#extraInferenceTime = 0;
#logger = log();
constructor(opts, model) {
super();
this.#opts = opts;
this.#model = model;
this.#task = new Promise(async () => {
let inferenceData = new Float32Array(this.#model.windowSizeSamples);
let speechBuffer = null;
let speechBufferMaxReached = false;
let speechBufferIndex = 0;
let pubSpeaking = false;
let pubSpeechDuration = 0;
let pubSilenceDuration = 0;
let pubCurrentSample = 0;
let pubTimestamp = 0;
let pubSampleRate = 0;
let pubPrefixPaddingSamples = 0;
let speechThresholdDuration = 0;
let silenceThresholdDuration = 0;
let inputFrames = [];
let inferenceFrames = [];
let resampler = null;
let inputCopyRemainingFrac = 0;
for await (const frame of this.input) {
if (typeof frame === "symbol") {
continue;
}
if (!pubSampleRate || !speechBuffer) {
pubSampleRate = frame.sampleRate;
pubPrefixPaddingSamples = Math.trunc(
this.#opts.prefixPaddingDuration * pubSampleRate / 1e3
);
speechBuffer = new Int16Array(
this.#opts.maxBufferedSpeech * pubSampleRate + pubPrefixPaddingSamples
);
if (this.#opts.sampleRate !== pubSampleRate) {
resampler = new AudioResampler(
pubSampleRate,
this.#opts.sampleRate,
1,
AudioResamplerQuality.QUICK
// VAD doesn't need high quality
);
}
} else if (frame.sampleRate !== pubSampleRate) {
this.#logger.error("a frame with a different sample rate was already published");
continue;
}
inputFrames.push(frame);
if (resampler) {
inferenceFrames.push(...resampler.push(frame));
} else {
inferenceFrames.push(frame);
}
while (true) {
const startTime = process.hrtime.bigint();
const availableInferenceSamples = inferenceFrames.map((x) => x.samplesPerChannel).reduce((acc, x) => acc + x, 0);
if (availableInferenceSamples < this.#model.windowSizeSamples) {
break;
}
const inputFrame = mergeFrames(inputFrames);
const inferenceFrame = mergeFrames(inferenceFrames);
inferenceData = Float32Array.from(
inferenceFrame.data.subarray(0, this.#model.windowSizeSamples),
(x) => x / 32767
);
const p = await this.#model.run(inferenceData).then((data) => this.#expFilter.apply(1, data));
const windowDuration = this.#model.windowSizeSamples / this.#opts.sampleRate * 1e3;
pubCurrentSample += this.#model.windowSizeSamples;
pubTimestamp += windowDuration;
const resamplingRatio = pubSampleRate / this.#model.sampleRate;
const toCopy = this.#model.windowSizeSamples * resamplingRatio + inputCopyRemainingFrac;
const toCopyInt = Math.trunc(toCopy);
inputCopyRemainingFrac = toCopy - toCopyInt;
const availableSpace = speechBuffer.length - speechBufferIndex;
const toCopyBuffer = Math.min(this.#model.windowSizeSamples, availableSpace);
if (toCopyBuffer > 0) {
speechBuffer.set(inputFrame.data.subarray(0, toCopyBuffer), speechBufferIndex);
speechBufferIndex += toCopyBuffer;
} else if (!speechBufferMaxReached) {
speechBufferMaxReached = true;
this.#logger.warn(
"maxBufferedSpeech reached, ignoring further data for the current speech input"
);
}
const inferenceDuration = Number((process.hrtime.bigint() - startTime) / BigInt(1e6));
this.#extraInferenceTime = Math.max(
0,
this.#extraInferenceTime + inferenceDuration - windowDuration
);
if (this.#extraInferenceTime > SLOW_INFERENCE_THRESHOLD) {
this.#logger.child({ delay: this.#extraInferenceTime }).warn("inference is slower than realtime");
}
if (pubSpeaking) {
pubSpeechDuration += inferenceDuration;
} else {
pubSilenceDuration += inferenceDuration;
}
this.queue.put({
type: VADEventType.INFERENCE_DONE,
samplesIndex: pubCurrentSample,
timestamp: pubTimestamp,
silenceDuration: pubSilenceDuration,
speechDuration: pubSpeechDuration,
probability: p,
inferenceDuration,
frames: [
new AudioFrame(inputFrame.data.subarray(0, toCopyInt), pubSampleRate, 1, toCopyInt)
],
speaking: pubSpeaking
});
const resetWriteCursor = () => {
if (!speechBuffer) throw new Error("speechBuffer is empty");
if (speechBufferIndex <= pubPrefixPaddingSamples) {
return;
}
});
}
const paddingData = speechBuffer.subarray(
speechBufferIndex - pubPrefixPaddingSamples,
speechBufferIndex
);
speechBuffer.set(paddingData, 0);
speechBufferIndex = pubPrefixPaddingSamples;
speechBufferMaxReached = false;
};
const copySpeechBuffer = () => {
if (!speechBuffer) throw new Error("speechBuffer is empty");
return new AudioFrame(
speechBuffer.subarray(0, speechBufferIndex),
pubSampleRate,
1,
speechBufferIndex
);
};
if (p > this.#opts.activationThreshold) {
speechThresholdDuration += windowDuration;
silenceThresholdDuration = 0;
if (!pubSpeaking && speechThresholdDuration >= this.#opts.minSpeechDuration) {
pubSpeaking = true;
pubSilenceDuration = 0;
pubSpeechDuration = speechThresholdDuration;
this.queue.put({
type: VADEventType.START_OF_SPEECH,
samplesIndex: pubCurrentSample,
timestamp: pubTimestamp,
silenceDuration: pubSilenceDuration,
speechDuration: pubSpeechDuration,
probability: p,
inferenceDuration,
frames: [copySpeechBuffer()],
speaking: pubSpeaking
});
}
} else {
silenceThresholdDuration += windowDuration;
speechThresholdDuration = 0;
if (!pubSpeaking) {
resetWriteCursor();
}
if (pubSpeaking && silenceThresholdDuration > this.#opts.minSilenceDuration) {
pubSpeaking = false;
pubSpeechDuration = 0;
pubSilenceDuration = silenceThresholdDuration;
this.queue.put({
type: VADEventType.END_OF_SPEECH,
samplesIndex: pubCurrentSample,
timestamp: pubTimestamp,
silenceDuration: pubSilenceDuration,
speechDuration: pubSpeechDuration,
probability: p,
inferenceDuration,
frames: [copySpeechBuffer()],
speaking: pubSpeaking
});
resetWriteCursor();
}
}
inputFrames = [];
inferenceFrames = [];
if (inputFrame.data.length > toCopyInt) {
const data = inputFrame.data.subarray(toCopyInt);
inputFrames.push(new AudioFrame(data, pubSampleRate, 1, Math.trunc(data.length / 2)));
}
if (inferenceFrame.data.length > this.#model.windowSizeSamples) {
const data = inferenceFrame.data.subarray(this.#model.windowSizeSamples);
inferenceFrames.push(
new AudioFrame(data, this.#opts.sampleRate, 1, Math.trunc(data.length / 2))
);
}
}
}
});
}
}
export {
VAD,
VADStream
};
//# sourceMappingURL=vad.js.map
{
"name": "@livekit/agents-plugin-silero",
"version": "0.4.6",
"version": "0.5.0",
"description": "Silero voice activity detection LiveKit Node Agents",
"main": "dist/index.js",
"require": "dist/index.cjs",
"types": "dist/index.d.ts",
"exports": {
".": {
"types": "./dist/index.d.ts",
"import": "./dist/index.js",
"require": "./dist/index.cjs"
}
},
"author": "LiveKit",

@@ -13,11 +21,13 @@ "type": "module",

"dist",
"src"
"src",
"README.md"
],
"devDependencies": {
"@livekit/agents": "^x",
"@livekit/rtc-node": "^0.12.1",
"@microsoft/api-extractor": "^7.35.0",
"@livekit/rtc-node": "^0.11.1",
"@types/ws": "^8.5.10",
"onnxruntime-common": "^1.19.2",
"typescript": "^5.0.0",
"@livekit/agents": "^0.4.6"
"tsup": "^8.3.5",
"typescript": "^5.0.0"
},

@@ -29,7 +39,7 @@ "dependencies": {

"peerDependencies": {
"@livekit/rtc-node": "^0.11.1",
"@livekit/agents": "^0.4.6"
"@livekit/rtc-node": "^0.12.1",
"@livekit/agents": "^0.5.0x"
},
"scripts": {
"build": "tsc && cp src/*.onnx dist/",
"build": "tsup --onSuccess \"tsc --declaration --emitDeclarationOnly\" && cp src/silero_vad.onnx dist/",
"clean": "rm -rf dist",

@@ -36,0 +46,0 @@ "clean:build": "pnpm clean && pnpm build",

// SPDX-FileCopyrightText: 2024 LiveKit, Inc.
//
// SPDX-License-Identifier: Apache-2.0
import { fileURLToPath } from 'node:url';
import { InferenceSession, Tensor } from 'onnxruntime-node';

@@ -9,3 +10,3 @@

export const newInferenceSession = (forceCPU: boolean) => {
return InferenceSession.create(new URL('silero_vad.onnx', import.meta.url).pathname, {
return InferenceSession.create(fileURLToPath(new URL('silero_vad.onnx', import.meta.url).href), {
interOpNumThreads: 1,

@@ -12,0 +13,0 @@ intraOpNumThreads: 1,

@@ -82,5 +82,6 @@ // SPDX-FileCopyrightText: 2024 LiveKit, Inc.

*/
static async load(opts = defaultVADOptions): Promise<VAD> {
const session = await newInferenceSession(opts.forceCPU);
return new VAD(session, opts);
static async load(opts: Partial<VADOptions> = {}): Promise<VAD> {
const mergedOpts: VADOptions = { ...defaultVADOptions, ...opts };
const session = await newInferenceSession(mergedOpts.forceCPU);
return new VAD(session, mergedOpts);
}

@@ -87,0 +88,0 @@

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc