Security News
Research
Data Theft Repackaged: A Case Study in Malicious Wrapper Packages on npm
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
@orama/orama
Advanced tools
A complete search engine and RAG pipeline in your browser, server, or edge network with support for full-text, vector, and hybrid search in less than 2kb.
If you need more info, help, or want to provide general feedback on Orama, join the Orama Slack channel
You can install Orama using npm
, yarn
, pnpm
, bun
:
npm i @orama/orama
Or import it directly in a browser module:
<html>
<body>
<script type="module">
import { create, insert, search } from 'https://cdn.jsdelivr.net/npm/@orama/orama@latest/+esm'
</script>
</body>
</html>
With Deno, you can just use the same CDN URL or use npm specifiers:
import { create, search, insert } from 'npm:@orama/orama'
Read the complete documentation at https://docs.orama.com.
Orama is quite simple to use. The first thing to do is to create a new database instance and set an indexing schema:
import { create, insert, remove, search, searchVector } from '@orama/orama'
const db = create({
schema: {
name: 'string',
description: 'string',
price: 'number',
embedding: 'vector[1536]', // Vector size must be expressed during schema initialization
meta: {
rating: 'number',
},
},
})
insert(db, {
name: 'Noise cancelling headphones',
description: 'Best noise cancelling headphones on the market',
price: 99.99,
embedding: [0.2432, 0.9431, 0.5322, 0.4234, ...],
meta: {
rating: 4.5
}
})
const results = search(db, {
term: 'Best headphones'
})
// {
// elapsed: {
// raw: 21492,
// formatted: '21μs',
// },
// hits: [
// {
// id: '41013877-56',
// score: 0.925085832971998432,
// document: {
// name: 'Noise cancelling headphones',
// description: 'Best noise cancelling headphones on the market',
// price: 99.99,
// embedding: [0.2432, 0.9431, 0.5322, 0.4234, ...],
// meta: {
// rating: 4.5
// }
// }
// }
// ],
// count: 1
// }
Orama currently supports 10 different data types:
Type | Description | Example |
---|---|---|
string | A string of characters. | 'Hello world' |
number | A numeric value, either float or integer. | 42 |
boolean | A boolean value. | true |
enum | An enum value. | 'drama' |
geopoint | A geopoint value. | { lat: 40.7128, lon: 74.0060 } |
string[] | An array of strings. | ['red', 'green', 'blue'] |
number[] | An array of numbers. | [42, 91, 28.5] |
boolean[] | An array of booleans. | [true, false, false] |
enum[] | An array of enums. | ['comedy', 'action', 'romance'] |
vector[<size>] | A vector of numbers to perform vector search on. | [0.403, 0.192, 0.830] |
Orama supports both vector and hybrid search by just setting mode: 'vector'
when performing search.
To perform this kind of search, you'll need to provide text embeddings at search time:
import { create, insertMultiple, search } from '@orama/orama'
const db = create({
schema: {
title: 'string',
embedding: 'vector[5]'', // we are using a 5-dimensional vector.
},
});
insertMultiple(db, [
{ title: 'The Prestige', embedding: [0.938293, 0.284951, 0.348264, 0.948276, 0.56472] },
{ title: 'Barbie', embedding: [0.192839, 0.028471, 0.284738, 0.937463, 0.092827] },
{ title: 'Oppenheimer', embedding: [0.827391, 0.927381, 0.001982, 0.983821, 0.294841] },
])
const results = search(db, {
// Search mode. Can be 'vector', 'hybrid', or 'fulltext'
mode: 'vector',
vector: {
// The vector (text embedding) to use for search
value: [0.938292, 0.284961, 0.248264, 0.748276, 0.26472],
// The schema property where Orama should compare embeddings
property: 'embedding',
},
// Minimum similarity to determine a match. Defaults to `0.8`
similarity: 0.85,
// Defaults to `false`. Setting to 'true' will return the embeddings in the response (which can be very large).
includeVectors: true,
})
Have trouble generating embeddings for vector and hybrid search? Try our @orama/plugin-embeddings
plugin!
import { create } from '@orama/orama'
import { pluginEmbeddings } from '@orama/plugin-embeddings'
import '@tensorflow/tfjs-node' // Or any other appropriate TensorflowJS backend, like @tensorflow/tfjs-backend-webgl
const plugin = await pluginEmbeddings({
embeddings: {
// Schema property used to store generated embeddings
defaultProperty: 'embeddings',
onInsert: {
// Generate embeddings at insert-time
generate: true,
// properties to use for generating embeddings at insert time.
// Will be concatenated to generate a unique embedding.
properties: ['description'],
verbose: true,
}
}
})
const db = create({
schema: {
description: 'string',
// Orama generates 512-dimensions vectors.
// When using @orama/plugin-embeddings, set the property where you want to store embeddings as `vector[512]`.
embeddings: 'vector[512]'
},
plugins: [plugin]
})
// Orama will generate and store embeddings at insert-time!
await insert(db, { description: 'Classroom Headphones Bulk 5 Pack, Student On Ear Color Varieties' })
await insert(db, { description: 'Kids Wired Headphones for School Students K-12' })
await insert(db, { description: 'Kids Headphones Bulk 5-Pack for K-12 School' })
await insert(db, { description: 'Bose QuietComfort Bluetooth Headphones' })
// Orama will also generate and use embeddings at search time when search mode is set to "vector" or "hybrid"!
const searchResults = await search(db, {
term: 'Headphones for 12th grade students',
mode: 'vector'
})
Want to use OpenAI embedding models? Use our Secure Proxy plugin to call OpenAI from the client-side securely.
Since v3.0.0
, Orama allows you to create your own ChatGPT/Perplexity/SearchGPT-like experience. You will need to call the OpenAI APIs, so we strongly recommend using the Secure Proxy Plugin to do that securely from your client side. It's free!
import { create, insert } from '@orama/orama'
import { pluginSecureProxy } from '@orama/plugin-secure-proxy'
const secureProxy = await pluginSecureProxy({
apiKey: 'my-api-key',
defaultProperty: 'embeddings',
models: {
// The chat model to use to generate the chat answer
chat: 'openai/gpt-4o-mini'
}
})
const db = create({
schema: {
name: 'string'
},
plugins: [secureProxy]
})
insert(db, { name: 'John Doe' })
insert(db, { name: 'Jane Doe' })
const session = new AnswerSession(db, {
// Customize the prompt for the system
systemPrompt: 'You will get a name as context, please provide a greeting message',
events: {
// Log all state changes. Useful to reactively update a UI on a new message chunk, sources, etc.
onStateChange: console.log,
}
})
const response = await session.ask({
term: 'john'
})
console.log(response) // Hello, John Doe! How are you doing?
Read the complete documentation here.
Read the complete documentation at https://docs.orama.com/open-source.
Write your own plugin: https://docs.orama.com/open-source/plugins/writing-your-own-plugins
Orama is licensed under the Apache 2.0 license.
FAQs
A complete search engine and RAG pipeline in your browser, server, or edge network with support for full-text, vector, and hybrid search in less than 2kb.
We found that @orama/orama demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 8 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Research
The Socket Research Team breaks down a malicious wrapper package that uses obfuscation to harvest credentials and exfiltrate sensitive data.
Research
Security News
Attackers used a malicious npm package typosquatting a popular ESLint plugin to steal sensitive data, execute commands, and exploit developer systems.
Security News
The Ultralytics' PyPI Package was compromised four times in one weekend through GitHub Actions cache poisoning and failure to rotate previously compromised API tokens.