![Maven Central Adds Sigstore Signature Validation](https://cdn.sanity.io/images/cgdhsj6q/production/7da3bc8a946cfb5df15d7fcf49767faedc72b483-1024x1024.webp?w=400&fit=max&auto=format)
Security News
Maven Central Adds Sigstore Signature Validation
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.
@stdlib/complex-float64-base-add
Advanced tools
Add two double-precision complex floating-point numbers.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Add two double-precision complex floating-point numbers.
npm install @stdlib/complex-float64-base-add
var add = require( '@stdlib/complex-float64-base-add' );
Adds two double-precision complex floating-point numbers.
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var real = require( '@stdlib/complex-float64-real' );
var imag = require( '@stdlib/complex-float64-imag' );
var z = new Complex128( -1.5, 2.5 );
var v = add( z, z );
// returns <Complex128>
var re = real( v );
// returns -3.0
var im = imag( v );
// returns 5.0
var Complex128 = require( '@stdlib/complex-float64-ctor' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' ).factory;
var add = require( '@stdlib/complex-float64-base-add' );
var rand = discreteUniform( -50, 50 );
var z1;
var z2;
var z3;
var i;
for ( i = 0; i < 100; i++ ) {
z1 = new Complex128( rand(), rand() );
z2 = new Complex128( rand(), rand() );
z3 = add( z1, z2 );
console.log( '(%s) + (%s) = %s', z1.toString(), z2.toString(), z3.toString() );
}
#include "stdlib/complex/float64/base/add.h"
Adds two double-precision complex floating-point numbers.
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/real.h"
#include "stdlib/complex/float64/imag.h"
stdlib_complex128_t z = stdlib_complex128( 3.0, -2.0 );
stdlib_complex128_t out = stdlib_base_complex128_add( z, z );
double re = stdlib_complex128_real( out );
// returns 6.0
double im = stdlib_complex128_imag( out );
// returns -4.0
The function accepts the following arguments:
[in] stdlib_complex128_t
input value.[in] stdlib_complex128_t
input value.stdlib_complex128_t stdlib_base_complex128_add( const stdlib_complex128_t z1, const stdlib_complex128_t z2 );
#include "stdlib/complex/float64/base/add.h"
#include "stdlib/complex/float64/ctor.h"
#include "stdlib/complex/float64/reim.h"
#include <stdio.h>
int main( void ) {
const stdlib_complex128_t x[] = {
stdlib_complex128( 3.14, 1.5 ),
stdlib_complex128( -3.14, 1.5 ),
stdlib_complex128( 0.0, -0.0 ),
stdlib_complex128( 0.0/0.0, 0.0/0.0 )
};
stdlib_complex128_t v;
stdlib_complex128_t y;
double re;
double im;
int i;
for ( i = 0; i < 4; i++ ) {
v = x[ i ];
stdlib_complex128_reim( v, &re, &im );
printf( "z = %lf + %lfi\n", re, im );
y = stdlib_base_complex128_add( v, v );
stdlib_complex128_reim( y, &re, &im );
printf( "add(z, z) = %lf + %lfi\n", re, im );
}
}
@stdlib/math-base/ops/cdiv
: divide two complex numbers.@stdlib/complex-float64/base/mul
: multiply two double-precision complex floating-point numbers.@stdlib/math-base/ops/csub
: subtract two double-precision complex floating-point numbers.This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.
FAQs
Add two double-precision complex floating-point numbers.
The npm package @stdlib/complex-float64-base-add receives a total of 0 weekly downloads. As such, @stdlib/complex-float64-base-add popularity was classified as not popular.
We found that @stdlib/complex-float64-base-add demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Maven Central now validates Sigstore signatures, making it easier for developers to verify the provenance of Java packages.
Security News
CISOs are racing to adopt AI for cybersecurity, but hurdles in budgets and governance may leave some falling behind in the fight against cyber threats.
Research
Security News
Socket researchers uncovered a backdoored typosquat of BoltDB in the Go ecosystem, exploiting Go Module Proxy caching to persist undetected for years.