Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

@stdlib/complex-float64-reim

Package Overview
Dependencies
Maintainers
0
Versions
3
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

@stdlib/complex-float64-reim

Return the real and imaginary components of a double-precision complex floating-point number.

  • 0.1.2
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
0
Created
Source
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

reim

NPM version Build Status Coverage Status

Return the real and imaginary components of a double-precision complex floating-point number.

Installation

npm install @stdlib/complex-float64-reim

Usage

var reim = require( '@stdlib/complex-float64-reim' );
reim( z )

Returns the real and imaginary components of a double-precision complex floating-point number.

var Complex128 = require( '@stdlib/complex-float64-ctor' );

var z = new Complex128( 5.0, 3.0 );
var out = reim( z );
// returns <Float64Array>[ 5.0, 3.0 ]

Examples

var Complex128 = require( '@stdlib/complex-float64-ctor' );
var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
var filledarrayBy = require( '@stdlib/array-filled-by' );
var reim = require( '@stdlib/complex-float64-reim' );

function random() {
    return new Complex128( discreteUniform( -10, 10 ), discreteUniform( -10, 10 ) );
}

// Generate an array of random complex numbers:
var x = filledarrayBy( 100, 'complex128', random );
// returns <Complex128Array>

// Return the real and imaginary components of each complex number...
var out;
var z;
var i;
for ( i = 0; i < x.length; i++ ) {
    z = x.get( i );
    out = reim( z );
    console.log( '%s => %d, %d', z.toString(), out[ 0 ], out[ 1 ] );
}

C APIs

Usage

#include "stdlib/complex/float64/reim.h"
stdlib_complex128_reim( z, *re, *im )

Returns the real and imaginary components of a double-precision complex floating-point number.

#include "stdlib/complex/float64/ctor.h"

stdlib_complex128_t z = stdlib_complex128( 5.0, 2.0 );

// ...

double re;
double im;

stdlib_complex128_reim( z, &re, &im );

The function accepts the following arguments:

  • z: [in] stdlib_complex128_t double-precision complex floating-point number.
  • re: [out] double* destination for real component.
  • im: [out] double* destination for imaginary component.
void stdlib_complex128_reim( const stdlib_complex128_t z, double *re, double *im );

Examples

#include "stdlib/complex/float64/reim.h"
#include "stdlib/complex/float64/ctor.h"
#include <stdio.h>

int main( void ) {
    const stdlib_complex128_t x[] = {
        stdlib_complex128( 5.0, 2.0 ),
        stdlib_complex128( -2.0, 1.0 ),
        stdlib_complex128( 0.0, -0.0 ),
        stdlib_complex128( 0.0/0.0, 0.0/0.0 )
    };

    double re;
    double im;
    int i;
    for ( i = 0; i < 4; i++ ) {
        stdlib_complex128_reim( x[ i ], &re, &im );
        printf( "reim(v) = %lf, %lf\n", re, im );
    }
}

See Also


Notice

This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright © 2016-2024. The Stdlib Authors.

Keywords

FAQs

Package last updated on 27 Jul 2024

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc