Security News
PyPI’s New Archival Feature Closes a Major Security Gap
PyPI now allows maintainers to archive projects, improving security and helping users make informed decisions about their dependencies.
@stdlib/math-base-tools-evalrational-compile
Advanced tools
Compile a module for evaluating a rational function.
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Compile a module for evaluating a rational function.
npm install @stdlib/math-base-tools-evalrational-compile
var compile = require( '@stdlib/math-base-tools-evalrational-compile' );
Compiles a module string containing an exported function which evaluates a rational function having coefficients P
and Q
.
var P = [ 3.0, 2.0, 1.0 ];
var Q = [ -1.0, -2.0, -3.0 ];
var str = compile( P, Q );
// returns <string>
The function supports the following options
:
float64
or float32
). Default: 'float64'
.In the example above, the output string would correspond to the following module:
'use strict';
// MAIN //
/**
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
*
* ## Notes
*
* - Coefficients should be sorted in ascending degree.
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @private
* @param {number} x - value at which to evaluate the rational function
* @returns {number} evaluated rational function
*/
function evalrational( x ) {
var ax;
var s1;
var s2;
if ( x === 0.0 ) {
return -3.0;
}
if ( x < 0.0 ) {
ax = -x;
} else {
ax = x;
}
if ( ax <= 1.0 ) {
s1 = 3.0 + (x * (2.0 + (x * 1.0)));
s2 = -1.0 + (x * (-2.0 + (x * -3.0)));
} else {
x = 1.0 / x;
s1 = 1.0 + (x * (2.0 + (x * 3.0)));
s2 = -3.0 + (x * (-2.0 + (x * -1.0)));
}
return s1 / s2;
}
// EXPORTS //
module.exports = evalrational;
The coefficients should be ordered in ascending degree, thus matching summation notation.
By default, the function assumes double-precision floating-point arithmetic. To emulate single-precision floating-point arithmetic, set the dtype
option to 'float32'
.
var P = [ 3.0, 2.0, 1.0 ];
var Q = [ -1.0, -2.0, -3.0 ];
var str = compile( P, Q, {
'dtype': 'float32'
});
// returns <string>
In the previous example, the output string would correspond to the following module:
'use strict';
// MODULES //
var float64ToFloat32 = require( '@stdlib/number-float64-base-to-float32' );
// MAIN //
/**
* Evaluates a rational function (i.e., the ratio of two polynomials described by the coefficients stored in \\(P\\) and \\(Q\\)).
*
* ## Notes
*
* - Coefficients should be sorted in ascending degree.
* - The implementation uses [Horner's rule][horners-method] for efficient computation.
*
* [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
*
* @private
* @param {number} x - value at which to evaluate the rational function
* @returns {number} evaluated rational function
*/
function evalrational( x ) {
var ax;
var s1;
var s2;
if ( x === 0.0 ) {
return -3.0;
}
if ( x < 0.0 ) {
ax = -x;
} else {
ax = x;
}
if ( ax <= 1.0 ) {
s1 = float64ToFloat32(3.0 + float64ToFloat32(x * float64ToFloat32(2.0 + float64ToFloat32(x * 1.0)))); // eslint-disable-line max-len
s2 = float64ToFloat32(-1.0 + float64ToFloat32(x * float64ToFloat32(-2.0 + float64ToFloat32(x * -3.0)))); // eslint-disable-line max-len
} else {
x = float64ToFloat32( 1.0 / x );
s1 = float64ToFloat32(1.0 + float64ToFloat32(x * float64ToFloat32(2.0 + float64ToFloat32(x * 3.0)))); // eslint-disable-line max-len
s2 = float64ToFloat32(-3.0 + float64ToFloat32(x * float64ToFloat32(-2.0 + float64ToFloat32(x * -1.0)))); // eslint-disable-line max-len
}
return float64ToFloat32( s1 / s2 );
}
// EXPORTS //
module.exports = evalrational;
var discreteUniform = require( '@stdlib/random-array-discrete-uniform' );
var compile = require( '@stdlib/math-base-tools-evalrational-compile' );
// Create arrays of random coefficients:
var P = discreteUniform( 10, -100, 100 );
var Q = discreteUniform( 10, -100, 100 );
// Compile a module for evaluating a rational function:
var str = compile( P, Q );
console.log( str );
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.
0.3.0 (2024-07-27)
<section class="features">c6c2a16
- add support for single-precision floating-point arithmetic emulation47c542c
- style: disable lint rule (by Athan Reines)c6c2a16
- feat: add support for single-precision floating-point arithmetic emulation (by Athan Reines)A total of 1 person contributed to this release. Thank you to this contributor:
FAQs
Compile a module for evaluating a rational function.
We found that @stdlib/math-base-tools-evalrational-compile demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
PyPI now allows maintainers to archive projects, improving security and helping users make informed decisions about their dependencies.
Research
Security News
Malicious npm package postcss-optimizer delivers BeaverTail malware, targeting developer systems; similarities to past campaigns suggest a North Korean connection.
Security News
CISA's KEV data is now on GitHub, offering easier access, API integration, commit history tracking, and automated updates for security teams and researchers.