Research
Security News
Malicious npm Packages Inject SSH Backdoors via Typosquatted Libraries
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
@stdlib/random-base-bernoulli
Advanced tools
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Bernoulli distributed pseudorandom numbers.
npm install @stdlib/random-base-bernoulli
var bernoulli = require( '@stdlib/random-base-bernoulli' );
Returns a pseudorandom number drawn from a Bernoulli distribution with success probability p
.
var r = bernoulli( 0.8 );
// returns <number>
If p < 0
or p > 1
, the function returns NaN
.
var r = bernoulli( 3.14 );
// returns NaN
r = bernoulli( -0.5 );
// returns NaN
If p
is NaN
, the function returns NaN
.
var r = bernoulli( NaN );
// returns NaN
Returns a pseudorandom number generator (PRNG) for generating pseudorandom numbers drawn from a Bernoulli distribution.
var rand = bernoulli.factory();
var r = rand( 0.3 );
// returns <number>
If provided p
, the returned generator returns random variates from the specified distribution.
var rand = bernoulli.factory( 0.6 );
var r = rand();
// returns <number>
r = rand();
// returns <number>
If not provided p
, the returned generator requires that p
be provided at each invocation.
var rand = bernoulli.factory();
var r = rand( 0.67 );
// returns <number>
r = rand( 0.42 );
// returns <number>
The function accepts the following options
:
[0,1)
. If provided, the function ignores both the state
and seed
options. In order to seed the returned pseudorandom number generator, one must seed the provided prng
(assuming the provided prng
is seedable).Uint32Array
containing pseudorandom number generator state. If provided, the function ignores the seed
option.boolean
indicating whether to copy a provided pseudorandom number generator state. Setting this option to false
allows sharing state between two or more pseudorandom number generators. Setting this option to true
ensures that a returned generator has exclusive control over its internal state. Default: true
.To use a custom PRNG as the underlying source of uniformly distributed pseudorandom numbers, set the prng
option.
var minstd = require( '@stdlib/random-base-minstd' );
var rand = bernoulli.factory({
'prng': minstd.normalized
});
var r = rand( 0.3 );
// returns <number>
To seed a pseudorandom number generator, set the seed
option.
var rand1 = bernoulli.factory({
'seed': 12345
});
var r1 = rand1( 0.2 );
// returns <number>
var rand2 = bernoulli.factory( 0.2, {
'seed': 12345
});
var r2 = rand2();
// returns <number>
var bool = ( r1 === r2 );
// returns true
To return a generator having a specific initial state, set the generator state
option.
var rand;
var bool;
var r;
var i;
// Generate pseudorandom numbers, thus progressing the generator state:
for ( i = 0; i < 1000; i++ ) {
r = bernoulli( 0.2 );
}
// Create a new PRNG initialized to the current state of `bernoulli`:
rand = bernoulli.factory({
'state': bernoulli.state
});
// Test that the generated pseudorandom numbers are the same:
bool = ( rand( 0.2 ) === bernoulli( 0.2 ) );
// returns true
The generator name.
var str = bernoulli.NAME;
// returns 'bernoulli'
The underlying pseudorandom number generator.
var prng = bernoulli.PRNG;
// returns <Function>
The value used to seed bernoulli()
.
var rand;
var r;
var i;
// Generate pseudorandom values...
for ( i = 0; i < 100; i++ ) {
r = bernoulli( 0.5 );
}
// Generate the same pseudorandom values...
rand = bernoulli.factory( 0.5, {
'seed': bernoulli.seed
});
for ( i = 0; i < 100; i++ ) {
r = rand();
}
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = bernoulli.factory({
'prng': Math.random
});
var seed = rand.seed;
// returns null
Length of generator seed.
var len = bernoulli.seedLength;
// returns <number>
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = bernoulli.factory({
'prng': Math.random
});
var len = rand.seedLength;
// returns null
Writable property for getting and setting the generator state.
var r = bernoulli( 0.3 );
// returns <number>
r = bernoulli( 0.3 );
// returns <number>
// ...
// Get a copy of the current state:
var state = bernoulli.state;
// returns <Uint32Array>
r = bernoulli( 0.3 );
// returns <number>
r = bernoulli( 0.3 );
// returns <number>
// Reset the state:
bernoulli.state = state;
// Replay the last two pseudorandom numbers:
r = bernoulli( 0.3 );
// returns <number>
r = bernoulli( 0.3 );
// returns <number>
// ...
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = bernoulli.factory({
'prng': Math.random
});
var state = rand.state;
// returns null
Length of generator state.
var len = bernoulli.stateLength;
// returns <number>
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = bernoulli.factory({
'prng': Math.random
});
var len = rand.stateLength;
// returns null
Size (in bytes) of generator state.
var sz = bernoulli.byteLength;
// returns <number>
If provided a PRNG for uniformly distributed numbers, this value is null
.
var rand = bernoulli.factory({
'prng': Math.random
});
var sz = rand.byteLength;
// returns null
Serializes the pseudorandom number generator as a JSON object.
var o = bernoulli.toJSON();
// returns { 'type': 'PRNG', 'name': '...', 'state': {...}, 'params': [] }
If provided a PRNG for uniformly distributed numbers, this method returns null
.
var rand = bernoulli.factory({
'prng': Math.random
});
var o = rand.toJSON();
// returns null
var bernoulli = require( '@stdlib/random-base-bernoulli' );
var seed;
var rand;
var i;
// Generate pseudorandom numbers...
for ( i = 0; i < 100; i++ ) {
console.log( bernoulli( 0.4 ) );
}
// Create a new pseudorandom number generator...
seed = 1234;
rand = bernoulli.factory( 0.4, {
'seed': seed
});
for ( i = 0; i < 100; i++ ) {
console.log( rand() );
}
// Create another pseudorandom number generator using a previous seed...
rand = bernoulli.factory( 0.4, {
'seed': bernoulli.seed
});
for ( i = 0; i < 100; i++ ) {
console.log( rand() );
}
@stdlib/random-array/bernoulli
: create an array containing pseudorandom numbers drawn from a Bernoulli distribution.@stdlib/random-iter/bernoulli
: create an iterator for generating pseudorandom numbers drawn from a Bernoulli distribution.@stdlib/random-streams/bernoulli
: create a readable stream for generating pseudorandom numbers drawn from a Bernoulli distribution.@stdlib/random-base/binomial
: binomial distributed pseudorandom numbers.This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.
FAQs
Bernoulli distributed pseudorandom numbers.
The npm package @stdlib/random-base-bernoulli receives a total of 3,139 weekly downloads. As such, @stdlib/random-base-bernoulli popularity was classified as popular.
We found that @stdlib/random-base-bernoulli demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 4 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.
Security News
MITRE's 2024 CWE Top 25 highlights critical software vulnerabilities like XSS, SQL Injection, and CSRF, reflecting shifts due to a refined ranking methodology.
Security News
In this segment of the Risky Business podcast, Feross Aboukhadijeh and Patrick Gray discuss the challenges of tracking malware discovered in open source softare.