ffi-rs
A module written in Rust and N-API provides interface (FFI) features for Node.js
Description
ffi-rs is a high-performance module written in Rust and N-API that provides FFI (Foreign Function Interface) features for Node.js. It allows developers to call functions written in other languages such as C++, C, and Rust directly from JavaScript without writing any C++ code.
This module aims to provide similar functionality to the node-ffi module but with a completely rewritten underlying codebase. The node-ffi module has been unmaintained for several years and is no longer usable, so ffi-rs was developed to fill that void.
features
- High performance ✨
- Simpler data description and API interface 💗
- Support more different data types between
Node.js
and c
😊 - Support modify data in place 🥸
- Provide many ways to handle pointer type directly 🐮
- Support output errno info 🤔️
benchmark
$ node bench/bench.js
Running "ffi" suite...
Progress: 100%
ffi-napi:
2 028 ops/s, ±4.87% | slowest, 99.24% slower
ffi-rs:
318 467 ops/s, ±0.17% | fastest
Finished 2 cases!
Fastest: ffi-rs
Slowest: ffi-napi
install
$ npm i ffi-rs
Support type
Currently, ffi-rs only supports these types of parameters and return values. However, support for more types may be added in the future based on actual usage scenarios.
Basic Type
Reference Type
C++ Class
If you want to call C++ function whose argument type is class, you can use pointer
type, see tutorial
Support Platform
Note: You need to make sure that the compilation environment of the dynamic library is the same as the installation and runtime environment of the ffi-rs
call.
- darwin-x64
- darwin-arm64
- linux-x64-gnu
- linux-x64-musl
- win32-x64-msvc
- win32-ia32-msvc
- linux-arm64-gnu
- linux-arm64-musl
Usage
View test.ts get the latest usage
Here is an example of how to use ffi-rs:
For the following C++ code, we compile this file into a dynamic library
write foreign function code
Note: The return value type of a function must be of type c
#include <cstdio>
#include <cstring>
#include <iostream>
#include <string>
extern "C" int sum(int a, int b) { return a + b; }
extern "C" double doubleSum(double a, double b) { return a + b; }
extern "C" const char *concatenateStrings(const char *str1, const char *str2) {
std::string result = std::string(str1) + std::string(str2);
char *cstr = new char[result.length() + 1];
strcpy(cstr, result.c_str());
return cstr;
}
extern "C" void noRet() { printf("%s", "hello world"); }
extern "C" bool return_opposite(bool input) { return !input; }
compile C code into a dynamic library
$ g++ -dynamiclib -o libsum.so cpp/sum.cpp
$ g++ -shared -o libsum.so cpp/sum.cpp
$ g++ -shared -o sum.dll cpp/sum.cpp
call dynamic library by ffi-rs
Then you can use ffi-rs
to invoke the dynamic library file that contains functions.
Initialization
const { equal } = require('assert')
const { load, DataType, open, close, arrayConstructor } = require('ffi-rs')
const a = 1
const b = 100
const dynamicLib = platform === 'win32' ? './sum.dll' : "./libsum.so"
open({
library: 'libsum',
path: dynamicLib
})
const r = load({
library: "libsum",
funcName: 'sum',
retType: DataType.I32,
paramsType: [DataType.I32, DataType.I32],
paramsValue: [a, b]
})
equal(r, a + b)
close('libsum')
Load Main Program handle
You can alse pass emptry path string in open
function like ffi-napi to get the main program handle refer dlopen
open({
library: "libnative",
path: "",
});
equal(
load({
library: "libnative",
funcName: "atoi",
retType: DataType.I32,
paramsType: [DataType.String],
paramsValue: ["1000"],
}),
1000,
);
Basic Types
number|string|boolean|double|void
are basic types
const c = "foo"
const d = c.repeat(200)
equal(c + d, load({
library: 'libsum',
funcName: 'concatenateStrings',
retType: DataType.String,
paramsType: [DataType.String, DataType.String],
paramsValue: [c, d]
}))
equal(undefined, load({
library: 'libsum',
funcName: 'noRet',
retType: DataType.Void,
paramsType: [],
paramsValue: []
}))
equal(1.1 + 2.2, load({
library: 'libsum',
funcName: 'doubleSum',
retType: DataType.Double,
paramsType: [DataType.Double, DataType.Double],
paramsValue: [1.1, 2.2]
}))
const bool_val = true
equal(!bool_val, load({
library: 'libsum',
funcName: 'return_opposite',
retType: DataType.Boolean,
paramsType: [DataType.Boolean],
paramsValue: [bool_val],
}))
Buffer
In the latest version, ffi-rs
supports modifying data in place.
The sample code is as follows
extern int modifyData(char* buffer) {
}
const arr = Buffer.alloc(200)
const res = load({
library: "libsum",
funcName: "modifyData",
retType: DataType.I32,
paramsType: [
DataType.U8Array
],
paramsValue: [arr]
})
console.log(arr)
Array
When using array
as retType
, you should use arrayConstructor
to specify the array type with a legal length which is important.
If the length is incorrect, the program may exit abnormally
extern "C" int *createArrayi32(const int *arr, int size) {
int *vec = (int *)malloc((size) * sizeof(int));
for (int i = 0; i < size; i++) {
vec[i] = arr[i];
}
return vec;
}
extern "C" double *createArrayDouble(const double *arr, int size) {
double *vec = (double *)malloc((size) * sizeof(double));
for (int i = 0; i < size; i++) {
vec[i] = arr[i];
}
return vec;
}
extern "C" char **createArrayString(char **arr, int size) {
char **vec = (char **)malloc((size) * sizeof(char *));
for (int i = 0; i < size; i++) {
vec[i] = arr[i];
}
return vec;
}
let bigArr = new Array(100).fill(100)
deepStrictEqual(bigArr, load({
library: 'libsum',
funcName: 'createArrayi32',
retType: arrayConstructor({ type: DataType.I32Array, length: bigArr.length }),
paramsType: [DataType.I32Array, DataType.I32],
paramsValue: [bigArr, bigArr.length],
}))
let bigDoubleArr = new Array(5).fill(1.1)
deepStrictEqual(bigDoubleArr, load({
library: 'libsum',
funcName: 'createArrayDouble',
retType: arrayConstructor({ type: DataType.DoubleArray, length: bigDoubleArr.length }),
paramsType: [DataType.DoubleArray, DataType.I32],
paramsValue: [bigDoubleArr, bigDoubleArr.length],
}))
let stringArr = [c, c.repeat(20)]
deepStrictEqual(stringArr, load({
library: 'libsum',
funcName: 'createArrayString',
retType: arrayConstructor({ type: DataType.StringArray, length: stringArr.length }),
paramsType: [DataType.StringArray, DataType.I32],
paramsValue: [stringArr, stringArr.length],
}))
Pointer
In ffi-rs
, we use DataType.External for wrapping the pointer
which enables it to be passed between Node.js
and C
.
Pointer
is complicated and underlying, ffi-rs
provide four functions to handle this pointer include createPointer
, restorePointer
, wrapPointer
, unwrapPointer
for different scene.
extern "C" const char *concatenateStrings(const char *str1, const char *str2) {
std::string result = std::string(str1) + std::string(str2);
char *cstr = new char[result.length() + 1];
strcpy(cstr, result.c_str());
return cstr;
}
extern "C" char *getStringFromPtr(void *ptr) { return (char *)ptr; };
const ptr = load({
library: "libsum",
funcName: "concatenateStrings",
retType: DataType.External,
paramsType: [DataType.String, DataType.String],
paramsValue: [c, d],
})
const string = load({
library: "libsum",
funcName: "getStringFromPtr",
retType: DataType.String,
paramsType: [DataType.External],
paramsValue: [ptr],
})
createPointer
createPointer
function is used for create a pointer point to specify type. In order to avoid mistaks, developers have to understand what type this pointer is.
For numeric type like i32|u8|i64|f64
, createPointer will create a pointer like *mut i32
point to there number
For types that are originally pointer types like char *
represent string
type in c
, createPointer will create a dual pointer like *mut *mut c_char
point to *mut c_char
.Developers can use unwrapPointer
get the interal pointer *mut c_char
let bigDoubleArr = new Array(5).fill(1.1);
deepStrictEqual(
bigDoubleArr,
load({
library: "libsum",
funcName: "createArrayDouble",
retType: arrayConstructor({
type: DataType.DoubleArray,
length: bigDoubleArr.length,
}),
paramsType: [DataType.DoubleArray, DataType.I32],
paramsValue: [bigDoubleArr, bigDoubleArr.length],
}),
);
For the code above, we can use createPointer
function to wrap a pointer data and send it as paramsValue
const funcExternal: unknown[] = createPointer({
paramsType: [DataType.DoubleArray],
paramsValue: [[1.1,2.2]]
})
const ptr = funcExternal[0]
load({
library: "libsum",
funcName: "createArrayDouble",
retType: arrayConstructor({
type: DataType.DoubleArray,
length: bigDoubleArr.length,
}),
paramsType: [DataType.External, DataType.I32],
paramsValue: [ptr, bigDoubleArr.length],
})
The two pieces of code above are equivalent
restorePointer
Similarly, you can use restorePointer
to restore data from pointer
which is wrapped by createPointer
or as a return value of foreign function
const pointerArr = createPointer({
paramsType: [DataType.DoubleArray],
paramsValue: [[1.1, 2.2]]
})
const restoreData = restorePointer({
retType: [arrayConstructor({
type: DataType.DoubleArray,
length: 2
})],
paramsValue: pointerArr
})
deepStrictEqual(restoreData, [[1.1, 2.2]])
wrapPointer
wrapPointer
is used to create multiple pointer.
For example, developers can use wrapPointer
to create a pointer point to other existing pointer.
const { wrapPointer } = require('ffi-rs')
const ptr = load({
library: "libsum",
funcName: "concatenateStrings",
retType: DataType.External,
paramsType: [DataType.String, DataType.String],
paramsValue: [c, d],
})
const wrapPtr = wrapPointer([ptr])[0]
unwrapPointer
unwrapPointer
is oppsite to wrapPointer
which is used to get the internal pointer for multiple pointer
const { unwrapPointer, createPointer } = require('ffi-rs')
let ptr = createPointer({
paramsType: [DataType.String],
paramsValue: ["foo"]
})
const unwrapPtr = unwrapPointer([ptr])[0]
Struct
To create a c struct or get a c struct as a return type, you need to define the types of the parameters strictly in the order in which the fields of the c structure are defined.
ffi-rs
provide a c struct named Person
with many types of field in sum.cpp
The example call method about how to call foreign function to create Person
struct or use Person
struct as a return value is here
Use array in struct
There are two types of array in c language like int* array
and int array[100]
yhat have some different usages.
The first type int* array
is a pointer type store the first address of the array.
The second type int array[100]
is a fixed length array and each element in array has continous address.
If you use a array as function parameter, this usually passes an array pointer regardless of which type you define.But if the array type is defined in struct, the two types of array define will cause different size and align of struct.
So, ffi-rs
need to distinguish between the two types.
By default, ffi-rs
use pointer array to calculate struct. If you confirm there should use static array, you can define it in the way
typedef struct Person {
uint8_t staticBytes[16];
} Person;
staticBytes: arrayConstructor({
type: DataType.U8Array,
length: parent.staticBytes.length,
dynamicArray: false
}),
Function
ffi-rs
supports passing js function to c, like this
typedef const void (*FunctionPointer)(int a, bool b, char *c, double d,
char **e, int *f, Person *g);
extern "C" void callFunction(FunctionPointer func) {
printf("callFunction\n");
for (int i = 0; i < 2; i++) {
int a = 100;
bool b = false;
double d = 100.11;
char *c = (char *)malloc(14 * sizeof(char));
strcpy(c, "Hello, World!");
char **stringArray = (char **)malloc(sizeof(char *) * 2);
stringArray[0] = strdup("Hello");
stringArray[1] = strdup("world");
int *i32Array = (int *)malloc(sizeof(int) * 3);
i32Array[0] = 101;
i32Array[1] = 202;
i32Array[2] = 303;
Person *p = createPerson();
func(a, b, c, d, stringArray, i32Array, p);
}
}
Corresponds to the code above,you can use ffi-rs
like
let count = 0;
const func = (a, b, c, d, e, f, g) => {
equal(a, 100);
equal(b, false);
equal(c, "Hello, World!");
equal(d, "100.11");
deepStrictEqual(e, ["Hello", "world"]);
deepStrictEqual(f, [101, 202, 303]);
deepStrictEqual(g, person);
console.log("callback called");
count++;
if (count === 4) {
logGreen("test succeed");
process.exit(0);
}
};
const funcExternal = createPointer({
paramsType: [funcConstructor({
paramsType: [
DataType.I32,
DataType.Boolean,
DataType.String,
DataType.Double,
arrayConstructor({ type: DataType.StringArray, length: 2 }),
arrayConstructor({ type: DataType.I32Array, length: 3 }),
personType,
],
retType: DataType.Void,
})],
paramsValue: [func]
})
load({
library: "libsum",
funcName: "callFunction",
retType: DataType.Void,
paramsType: [funcConstructor({
paramsType: [
DataType.I32,
DataType.Boolean,
DataType.String,
DataType.Double,
arrayConstructor({ type: DataType.StringArray, length: 2 }),
arrayConstructor({ type: DataType.I32Array, length: 3 }),
personType,
],
retType: DataType.Void,
})],
paramsValue: [func]
});
load({
library: "libsum",
funcName: "callFunction",
retType: DataType.Void,
paramsType: [
DataType.External,
],
paramsValue: unwrapPointer(funcExternal),
});
The function parameters supports type are all in the example above
Attention,since the vast majority of scenarios developers pass js function to c as a callback, so ffi-rs
will create threadsafe_function from jsfunction which means the jsfunction will be called asynchronous, and Node.js process will not be exited automatically
C++
We'll provide more examples from real-world scenarios, if you have any ideas, please submit an issue
class type
In C++ scene, we can use DataType.External
to get a class type pointer
In the code below, we use C types to wrap C++ types such as convert char *
to std::string
and return class pointer
MyClass *createMyClass(std::string name, int age) {
return new MyClass(name, age);
}
extern "C" MyClass *createMyClassFromC(const char *name, int age) {
return createMyClass(std::string(name), age);
}
extern "C" void printMyClass(MyClass *instance) { instance->print(); }
And then, it can called by the following code
const classPointer = load({
library: "libsum",
funcName: "createMyClassFromC",
retType: DataType.External,
paramsType: [
DataType.String,
DataType.I32
],
paramsValue: ["classString", 26],
});
load({
library: "libsum",
funcName: "printMyClass",
retType: DataType.External,
paramsType: [
DataType.External,
],
paramsValue: [classPointer],
})
errno
By default, ffi-rs
will not output errno info, developers can get it by pass errno: true
when call open method like
load({
library: 'libnative',
funcName: 'setsockopt',
retType: DataType.I32,
paramsType: [DataType.I32, DataType.I32, DataType.I32, DataType.External, DataType.I32],
paramsValue: [socket._handle.fd, level, option, pointer[0], 4],
errno: true
})