Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

api-builder-plugin-rekognition

Package Overview
Dependencies
Maintainers
1
Versions
10
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

api-builder-plugin-rekognition

A plugin for Axway API Builder

  • 1.0.9
  • latest
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

API Builder Plugin for AWS Rekognition for Image Analysis

Axway API Builder flow-node that implements AWS Rekognition for image Analysis : api-builder-plugin-rekognition.

Methods implemented:

  • detectFaces
  • detectLabels
  • detectModerationLabels
  • detectProtectiveEquipment
  • detectText

About flow-nodes

Flow-nodes are used within Axway API Builder's flow editor that is a low-code / no-code solution to designing and developing services that integrate to many different connected components, such as databases and APIs.

Install

After creating your API Builder Project, you can install this plugin using npm:

npm install api-builder-plugin-rekognition

Note that this command will install from npm. If you want to install locally, then provide the full path to the plugin folder

Before launching your API Builder app that uses this plugin, you must set the following two environment variables as per the AWS SDK for JavaScript online docs:

  • AWS_ACCESS_KEY_ID
  • AWS_SECRET_ACCESS_KEY

You should also add the following to the /conf/default.js file in order to overcome the 1MB default limit on POST data:

bodyParser: {
  limit: '5mb'
},

Note that 5mb is just an example. You can set it to the value that meets your needs based on the image size

Use

Find the plugin in the AI group in the Flow-Nodes panel. Drag onto the canvas and select the desired method and provide the input string (Image as a Base64 encoded string) and wire up to the rest of your flow as shown below:

Images (JPEG or PNG) need to be provided as Base64 encoded strings. You can find many Base64 encoders online such as this one.

Methods

The currently implemented methods are described below.

Detect Labels

AWS docs are here

Provide the Image input as a Base64 encoded string and the output will be similar to below:

Image = Base64 encoded version of the following image:

{
    "Labels": [
        {
            "Name": "Car",
            "Confidence": 98.41893005371094,
            "Instances": [
                {
                    "BoundingBox": {
                        "Width": 0.9095886945724487,
                        "Height": 0.4260041415691376,
                        "Left": 0.044332683086395264,
                        "Top": 0.37117668986320496
                    },
                    "Confidence": 98.41893005371094
                }
            ],
            "Parents": [
                {
                    "Name": "Vehicle"
                },
                {
                    "Name": "Transportation"
                }
            ]
        },
        {
            "Name": "Automobile",
            "Confidence": 98.41893005371094,
            "Instances": [],
            "Parents": [
                {
                    "Name": "Vehicle"
                },
                {
                    "Name": "Transportation"
                }
            ]
        },
        .
        .
        .
        {
            "Name": "Jaguar Car",
            "Confidence": 57.534969329833984,
            "Instances": [],
            "Parents": [
                {
                    "Name": "Car"
                },
                {
                    "Name": "Vehicle"
                },
                {
                    "Name": "Transportation"
                }
            ]
        }
    ],
    "LabelModelVersion": "2.0"
}

Detect Text

AWS docs are here

Provide the Image input as a Base64 encoded string and the output will be similar to below:

Image = Base64 encoded version of the following image:

{
    "TextDetections": [
        {
            "DetectedText": "Platforms",
            "Type": "LINE",
            "Id": 0,
            "Confidence": 80.76984405517578,
            "Geometry": {
                "BoundingBox": {
                    "Width": 0.322684109210968,
                    "Height": 0.21306292712688446,
                    "Left": 0.31165120005607605,
                    "Top": 0.20371627807617188
                },
                "Polygon": [
                    {
                        "X": 0.32710322737693787,
                        "Y": 0.20371627807617188
                    },
                    {
                        "X": 0.6343352794647217,
                        "Y": 0.33576905727386475
                    },
                    {
                        "X": 0.6188832521438599,
                        "Y": 0.41677922010421753
                    },
                    {
                        "X": 0.31165120005607605,
                        "Y": 0.28472644090652466
                    }
                ]
            }
        },
        {
            "DetectedText": "Tickets",
            "Type": "LINE",
            "Id": 1,
            "Confidence": 100,
            "Geometry": {
                "BoundingBox": {
                    "Width": 0.26651281118392944,
                    "Height": 0.18099485337734222,
                    "Left": 0.28803831338882446,
                    "Top": 0.3775637149810791
                },
                "Polygon": [
                    {
                        "X": 0.30245441198349,
                        "Y": 0.3775637149810791
                    },
                    {
                        "X": 0.5545511245727539,
                        "Y": 0.4674002528190613
                    },
                    {
                        "X": 0.5401350259780884,
                        "Y": 0.5585585832595825
                    },
                    {
                        "X": 0.28803831338882446,
                        "Y": 0.46872198581695557
                    }
                ]
            }
        },
        .
        .
        .
        {
            "DetectedText": "K",
            "Type": "WORD",
            "Id": 9,
            "ParentId": 4,
            "Confidence": 66.06149291992188,
            "Geometry": {
                "BoundingBox": {
                    "Width": 0.05910034105181694,
                    "Height": 0.0735236182808876,
                    "Left": 0.7411853075027466,
                    "Top": 0.5968468189239502
                },
                "Polygon": [
                    {
                        "X": 0.7411853075027466,
                        "Y": 0.5968468189239502
                    },
                    {
                        "X": 0.7794448733329773,
                        "Y": 0.5518018007278442
                    },
                    {
                        "X": 0.8132032752037048,
                        "Y": 0.6171171069145203
                    },
                    {
                        "X": 0.7749437093734741,
                        "Y": 0.6610360145568848
                    }
                ]
            }
        }
    ],
    "TextModelVersion": "3.0"
}

Detect Faces

AWS docs are here

Provide the Image input as a Base64 encoded string and the output will be similar to below:

Image = Base64 encoded version of the following image:

{
    "FaceDetails": [
        {
            "BoundingBox": {
                "Width": 0.37403011322021484,
                "Height": 0.3589228093624115,
                "Left": 0.3247712552547455,
                "Top": 0.07539718598127365
            },
            "AgeRange": {
                "Low": 23,
                "High": 35
            },
            "Smile": {
                "Value": false,
                "Confidence": 98.7928695678711
            },
            "Eyeglasses": {
                "Value": true,
                "Confidence": 99.85688018798828
            },
            .
            .
            .
            "MouthOpen": {
                "Value": false,
                "Confidence": 95.0227279663086
            },
            "Emotions": [
                {
                    "Type": "CALM",
                    "Confidence": 98.27169036865234
                },
                {
                    "Type": "CONFUSED",
                    "Confidence": 0.4600139260292053
                },
                .
                .
                .
                {
                    "Type": "HAPPY",
                    "Confidence": 0.08039141446352005
                }
            ],
            "Landmarks": [
                {
                    "Type": "eyeLeft",
                    "X": 0.4211536645889282,
                    "Y": 0.22201673686504364
                },
                {
                    "Type": "eyeRight",
                    "X": 0.5880940556526184,
                    "Y": 0.22860434651374817
                },
                .
                .
                .
                {
                    "Type": "upperJawlineRight",
                    "X": 0.6837441325187683,
                    "Y": 0.2481657713651657
                }
            ],
            "Pose": {
                "Roll": 2.1925508975982666,
                "Yaw": 0.3401939868927002,
                "Pitch": 11.061576843261719
            },
            "Quality": {
                "Brightness": 77.83470916748047,
                "Sharpness": 94.08262634277344
            },
            "Confidence": 99.99972534179688
        }
    ]
}

Detect Moderation Labels

AWS docs are here

Provide the Image input as a Base64 encoded string and the output will be similar to below:

Image = Base64 encoded version of the following image:

{
    "ModerationLabels": [
        {
            "Confidence": 95.99689483642578,
            "Name": "Alcoholic Beverages",
            "ParentName": "Alcohol"
        },
        {
            "Confidence": 95.99689483642578,
            "Name": "Alcohol",
            "ParentName": ""
        }
    ],
    "ModerationModelVersion": "4.0"
}

Detect Personal Protective Equipment (PPE)

AWS docs are here

Provide the Image input as a Base64 encoded string and the output will be similar to below:

Image = Base64 encoded version of the following image:

{
    "ProtectiveEquipmentModelVersion": "1.0",
    "Persons": [
        {
            "BodyParts": [
                {
                    "Name": "FACE",
                    "Confidence": 99.33659362792969,
                    "EquipmentDetections": [
                        {
                            "BoundingBox": {
                                "Width": 0.09513942152261734,
                                "Height": 0.10421869158744812,
                                "Left": 0.4654864966869354,
                                "Top": 0.32142555713653564
                            },
                            "Confidence": 99.97029876708984,
                            "Type": "FACE_COVER",
                            "CoversBodyPart": {
                                "Confidence": 89.59506225585938,
                                "Value": true
                            }
                        }
                    ]
                },
                {
                    "Name": "LEFT_HAND",
                    "Confidence": 97.67623901367188,
                    "EquipmentDetections": []
                },
                {
                    "Name": "RIGHT_HAND",
                    "Confidence": 56.84904479980469,
                    "EquipmentDetections": [
                        {
                            "BoundingBox": {
                                "Width": 0.09019285440444946,
                                "Height": 0.10900517553091049,
                                "Left": 0.22584359347820282,
                                "Top": 0.4841454327106476
                            },
                            "Confidence": 65.1576919555664,
                            "Type": "HAND_COVER",
                            "CoversBodyPart": {
                                "Confidence": 99.8289566040039,
                                "Value": true
                            }
                        }
                    ]
                },
                {
                    "Name": "HEAD",
                    "Confidence": 99.99517822265625,
                    "EquipmentDetections": []
                }
            ],
            "BoundingBox": {
                "Width": 0.4809523820877075,
                "Height": 0.8015267252922058,
                "Left": 0.2380952388048172,
                "Top": 0.18320611119270325
            },
            "Confidence": 99.83000183105469,
            "Id": 0
        },
        {
            "BodyParts": [
                {
                    "Name": "FACE",
                    "Confidence": 99.58224487304688,
                    "EquipmentDetections": [
                        {
                            "BoundingBox": {
                                "Width": 0.08927446603775024,
                                "Height": 0.10428228974342346,
                                "Left": 0.12037970125675201,
                                "Top": 0.33622512221336365
                            },
                            "Confidence": 99.7800521850586,
                            "Type": "FACE_COVER",
                            "CoversBodyPart": {
                                "Confidence": 99.94519805908203,
                                "Value": true
                            }
                        }
                    ]
                },
                {
                    "Name": "LEFT_HAND",
                    "Confidence": 99.28810119628906,
                    "EquipmentDetections": []
                },
                {
                    "Name": "RIGHT_HAND",
                    "Confidence": 99.97966766357422,
                    "EquipmentDetections": []
                },
                {
                    "Name": "HEAD",
                    "Confidence": 99.98377227783203,
                    "EquipmentDetections": []
                }
            ],
            "BoundingBox": {
                "Width": 0.420634925365448,
                "Height": 0.7811704874038696,
                "Left": 0.007936508394777775,
                "Top": 0.20610687136650085
            },
            "Confidence": 99.92481231689453,
            "Id": 1
        },
        {
            "BodyParts": [
                {
                    "Name": "FACE",
                    "Confidence": 99.1600112915039,
                    "EquipmentDetections": [
                        {
                            "BoundingBox": {
                                "Width": 0.09494524449110031,
                                "Height": 0.1097668930888176,
                                "Left": 0.7650715112686157,
                                "Top": 0.31457528471946716
                            },
                            "Confidence": 99.89432525634766,
                            "Type": "FACE_COVER",
                            "CoversBodyPart": {
                                "Confidence": 98.65139770507812,
                                "Value": true
                            }
                        }
                    ]
                },
                {
                    "Name": "LEFT_HAND",
                    "Confidence": 99.19236755371094,
                    "EquipmentDetections": []
                },
                {
                    "Name": "RIGHT_HAND",
                    "Confidence": 99.6152114868164,
                    "EquipmentDetections": []
                },
                {
                    "Name": "HEAD",
                    "Confidence": 99.98148345947266,
                    "EquipmentDetections": []
                }
            ],
            "BoundingBox": {
                "Width": 0.29523810744285583,
                "Height": 0.7913485765457153,
                "Left": 0.7047619223594666,
                "Top": 0.18066157400608063
            },
            "Confidence": 99.99444580078125,
            "Id": 2
        },
        {
            "BodyParts": [
                {
                    "Name": "FACE",
                    "Confidence": 63.59202194213867,
                    "EquipmentDetections": []
                },
                {
                    "Name": "HEAD",
                    "Confidence": 96.91404724121094,
                    "EquipmentDetections": [
                        {
                            "BoundingBox": {
                                "Width": 0.03824697062373161,
                                "Height": 0.041919633746147156,
                                "Left": 0.6655418276786804,
                                "Top": 0.40767616033554077
                            },
                            "Confidence": 60.57323455810547,
                            "Type": "HEAD_COVER",
                            "CoversBodyPart": {
                                "Confidence": 99.9076156616211,
                                "Value": true
                            }
                        }
                    ]
                }
            ],
            "BoundingBox": {
                "Width": 0.06825397163629532,
                "Height": 0.5038167834281921,
                "Left": 0.6555555462837219,
                "Top": 0.40458014607429504
            },
            "Confidence": 98.65675354003906,
            "Id": 3
        }
    ],
    "Summary": {
        "PersonsWithRequiredEquipment": [],
        "PersonsWithoutRequiredEquipment": [
            0,
            1,
            2
        ],
        "PersonsIndeterminate": [
            3
        ]
    }
}

Keywords

FAQs

Package last updated on 19 Sep 2022

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc