Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

bigint-crypto-utils

Package Overview
Dependencies
Maintainers
1
Versions
65
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

bigint-crypto-utils - npm Package Compare versions

Comparing version 2.5.4 to 2.5.6

lib/index.browser.bundle.min.mod.js

2

lib/index.browser.bundle.js

@@ -1,1 +0,1 @@

var bigintCryptoUtils=function(n){"use strict";function t(n){return(n=BigInt(n))>=0n?n:-n}function e(n){if(1n===(n=BigInt(n)))return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function r(n,t){if((n=BigInt(n))<=0n|(t=BigInt(t))<=0n)return NaN;let e=0n,r=1n,i=1n,o=0n;for(;0n!==n;){const s=t/n,a=t%n,c=e-i*s,u=r-o*s;t=n,n=a,e=i,r=o,i=c,o=u}return{b:t,x:e,y:r}}function i(n,e){if(n=t(n),e=t(e),0n===n)return e;if(0n===e)return n;let r=0n;for(;!(1n&(n|e));)n>>=1n,e>>=1n,r++;for(;!(1n&n);)n>>=1n;do{for(;!(1n&e);)e>>=1n;if(n>e){const t=n;n=e,e=t}e-=n}while(e);return n<<r}function o(n,t){const e=r(a(n,t),t);return 1n!==e.b?NaN:a(e.x,t)}function s(n,e,r){if(0n===(r=BigInt(r)))return NaN;if(1n===r)return 0n;if(n=a(n,r),(e=BigInt(e))<0n)return o(s(n,t(e),r),r);let i=1n;for(;e>0;)e%2n===1n&&(i=i*n%r),e/=2n,n=n**2n%r;return i}function a(n,t){return(t=BigInt(t))<=0?NaN:(n=BigInt(n)%t)<0?n+t:n}async function c(n,t=16){return"number"==typeof n&&(n=BigInt(n)),new Promise((e,r)=>{const i=new Worker(d());i.onmessage=n=>{i.terminate(),e(n.data.isPrime)},i.onmessageerror=n=>{r(n)},i.postMessage({rnd:n,iterations:t,id:0})})}function u(n,t=1n){if(n<=t)throw new Error("max must be > min");const r=n-t,i=e(r);let o;do{o=l(f(i))}while(o>r);return o+t}function f(n,t=!1){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);const e=g(Math.ceil(n/8),!1),r=n%8;if(r&&(e[0]=e[0]&2**r-1),t){const n=r?2**(r-1):128;e[0]=e[0]|n}return e}function g(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);let e;return e=new Uint8Array(n),self.crypto.getRandomValues(e),t&&(e[0]=128|e[0]),e}function l(n){let t=0n;for(const e of n.values()){const n=BigInt(e);t=(t<<BigInt(8))+n}return t}function d(){let n=`'use strict';const ${r.name}=${r.toString()};const ${o.name}=${o.toString()};const ${s.name}=${s.toString()};const ${a.name}=${a.toString()};const ${f.name}=${f.toString()};const ${g.name}=${g.toString()};const ${u.name}=${u.toString()};const ${c.name}=${m.toString()};${e.toString()}${l.toString()}`;return n+=`onmessage = ${async function(n){const t=await c(n.data.rnd,n.data.iterations);postMessage({isPrime:t,value:n.data.rnd,id:n.data.id})}.toString()};`,function(n){n=`(() => {${n}})()`;const t=new Blob([n],{type:"text/javascript"});return window.URL.createObjectURL(t)}(n)}function m(n,t=16){if(2n===n)return!0;if(0n===(1n&n)||1n===n)return!1;const e=[3n,5n,7n,11n,13n,17n,19n,23n,29n,31n,37n,41n,43n,47n,53n,59n,61n,67n,71n,73n,79n,83n,89n,97n,101n,103n,107n,109n,113n,127n,131n,137n,139n,149n,151n,157n,163n,167n,173n,179n,181n,191n,193n,197n,199n,211n,223n,227n,229n,233n,239n,241n,251n,257n,263n,269n,271n,277n,281n,283n,293n,307n,311n,313n,317n,331n,337n,347n,349n,353n,359n,367n,373n,379n,383n,389n,397n,401n,409n,419n,421n,431n,433n,439n,443n,449n,457n,461n,463n,467n,479n,487n,491n,499n,503n,509n,521n,523n,541n,547n,557n,563n,569n,571n,577n,587n,593n,599n,601n,607n,613n,617n,619n,631n,641n,643n,647n,653n,659n,661n,673n,677n,683n,691n,701n,709n,719n,727n,733n,739n,743n,751n,757n,761n,769n,773n,787n,797n,809n,811n,821n,823n,827n,829n,839n,853n,857n,859n,863n,877n,881n,883n,887n,907n,911n,919n,929n,937n,941n,947n,953n,967n,971n,977n,983n,991n,997n,1009n,1013n,1019n,1021n,1031n,1033n,1039n,1049n,1051n,1061n,1063n,1069n,1087n,1091n,1093n,1097n,1103n,1109n,1117n,1123n,1129n,1151n,1153n,1163n,1171n,1181n,1187n,1193n,1201n,1213n,1217n,1223n,1229n,1231n,1237n,1249n,1259n,1277n,1279n,1283n,1289n,1291n,1297n,1301n,1303n,1307n,1319n,1321n,1327n,1361n,1367n,1373n,1381n,1399n,1409n,1423n,1427n,1429n,1433n,1439n,1447n,1451n,1453n,1459n,1471n,1481n,1483n,1487n,1489n,1493n,1499n,1511n,1523n,1531n,1543n,1549n,1553n,1559n,1567n,1571n,1579n,1583n,1597n];for(let t=0;t<e.length&&e[t]<=n;t++){const r=e[t];if(n===r)return!0;if(n%r===0n)return!1}let r=0n;const i=n-1n;let o=i;for(;o%2n===0n;)o/=2n,++r;const a=i/2n**r;do{let t=s(u(i,2n),a,n);if(1n===t||t===i)continue;let e=1;for(;e<r&&(t=s(t,2n,n),t!==i);){if(1n===t)return!1;e++}if(t!==i)return!1}while(--t);return!0}return n.abs=t,n.bitLength=e,n.eGcd=r,n.gcd=i,n.isProbablyPrime=c,n.lcm=function(n,e){return n=BigInt(n),e=BigInt(e),0n===n&&0n===e?0n:t(n*e)/i(n,e)},n.max=function(n,t){return(n=BigInt(n))>=(t=BigInt(t))?n:t},n.min=function(n,t){return(n=BigInt(n))>=(t=BigInt(t))?t:n},n.modInv=o,n.modPow=s,n.prime=function(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);return new Promise(e=>{const r=[],i=(i,o)=>{if(i.isPrime){for(let n=0;n<r.length;n++)r[n].terminate();for(;r.length;)r.pop();e(i.value)}else{const e=l(f(n,!0));try{o.postMessage({rnd:e,iterations:t,id:i.id})}catch(n){}}};{const n=d();for(let t=0;t<self.navigator.hardwareConcurrency-1;t++){const t=new Worker(n);t.onmessage=n=>i(n.data,t),r.push(t)}}for(let e=0;e<r.length;e++){const i=l(f(n,!0));r[e].postMessage({rnd:i,iterations:t,id:e})}})},n.primeSync=function(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);let e=0n;do{e=l(g(n/8,!0))}while(!m(e,t));return e},n.randBetween=u,n.randBits=f,n.randBytes=function(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);let e;return new Promise((function(r){e=new Uint8Array(n),self.crypto.getRandomValues(e),t&&(e[0]=128|e[0]),r(e)}))},n.randBytesSync=g,n.toZn=a,n}({});
var bigintCryptoUtils=function(n){"use strict";function t(n){return(n=BigInt(n))>=0n?n:-n}function e(n){if(1n===(n=BigInt(n)))return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function r(n,t){if((n=BigInt(n))<=0n|(t=BigInt(t))<=0n)return NaN;let e=0n,r=1n,i=1n,o=0n;for(;0n!==n;){const s=t/n,a=t%n,c=e-i*s,u=r-o*s;t=n,n=a,e=i,r=o,i=c,o=u}return{b:t,x:e,y:r}}function i(n,e){if(n=t(n),e=t(e),0n===n)return e;if(0n===e)return n;let r=0n;for(;!(1n&(n|e));)n>>=1n,e>>=1n,r++;for(;!(1n&n);)n>>=1n;do{for(;!(1n&e);)e>>=1n;if(n>e){const t=n;n=e,e=t}e-=n}while(e);return n<<r}function o(n,t){const e=r(a(n,t),t);return 1n!==e.b?NaN:a(e.x,t)}function s(n,e,r){if(0n===(r=BigInt(r)))return NaN;if(1n===r)return 0n;if(n=a(n,r),(e=BigInt(e))<0n)return o(s(n,t(e),r),r);let i=1n;for(;e>0;)e%2n===1n&&(i=i*n%r),e/=2n,n=n**2n%r;return i}function a(n,t){return(t=BigInt(t))<=0?NaN:(n=BigInt(n)%t)<0?n+t:n}async function c(n,t=16){return"number"==typeof n&&(n=BigInt(n)),new Promise((e,r)=>{const i=new Worker(d());i.onmessage=n=>{i.terminate(),e(n.data.isPrime)},i.onmessageerror=n=>{r(n)},i.postMessage({rnd:n,iterations:t,id:0})})}function u(n,t=1n){if(n<=t)throw new Error("max must be > min");const r=n-t,i=e(r);let o;do{o=l(f(i))}while(o>r);return o+t}function f(n,t=!1){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);const e=g(Math.ceil(n/8),!1),r=n%8;if(r&&(e[0]=e[0]&2**r-1),t){const n=r?2**(r-1):128;e[0]=e[0]|n}return e}function g(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);let e;return e=new Uint8Array(n),self.crypto.getRandomValues(e),t&&(e[0]=128|e[0]),e}function l(n){let t=0n;for(const e of n.values()){const n=BigInt(e);t=(t<<BigInt(8))+n}return t}function d(){let n=`'use strict';const ${r.name}=${r.toString()};const ${o.name}=${o.toString()};const ${s.name}=${s.toString()};const ${a.name}=${a.toString()};const ${f.name}=${f.toString()};const ${g.name}=${g.toString()};const ${u.name}=${u.toString()};const ${c.name}=${m.toString()};${e.toString()}${l.toString()}`;return n+=`onmessage = ${async function(n){const t=await c(n.data.rnd,n.data.iterations);postMessage({isPrime:t,value:n.data.rnd,id:n.data.id})}.toString()};`,function(n){n=`(() => {${n}})()`;const t=new Blob([n],{type:"text/javascript"});return window.URL.createObjectURL(t)}(n)}function m(n,t=16){if(2n===n)return!0;if(0n===(1n&n)||1n===n)return!1;const e=[3n,5n,7n,11n,13n,17n,19n,23n,29n,31n,37n,41n,43n,47n,53n,59n,61n,67n,71n,73n,79n,83n,89n,97n,101n,103n,107n,109n,113n,127n,131n,137n,139n,149n,151n,157n,163n,167n,173n,179n,181n,191n,193n,197n,199n,211n,223n,227n,229n,233n,239n,241n,251n,257n,263n,269n,271n,277n,281n,283n,293n,307n,311n,313n,317n,331n,337n,347n,349n,353n,359n,367n,373n,379n,383n,389n,397n,401n,409n,419n,421n,431n,433n,439n,443n,449n,457n,461n,463n,467n,479n,487n,491n,499n,503n,509n,521n,523n,541n,547n,557n,563n,569n,571n,577n,587n,593n,599n,601n,607n,613n,617n,619n,631n,641n,643n,647n,653n,659n,661n,673n,677n,683n,691n,701n,709n,719n,727n,733n,739n,743n,751n,757n,761n,769n,773n,787n,797n,809n,811n,821n,823n,827n,829n,839n,853n,857n,859n,863n,877n,881n,883n,887n,907n,911n,919n,929n,937n,941n,947n,953n,967n,971n,977n,983n,991n,997n,1009n,1013n,1019n,1021n,1031n,1033n,1039n,1049n,1051n,1061n,1063n,1069n,1087n,1091n,1093n,1097n,1103n,1109n,1117n,1123n,1129n,1151n,1153n,1163n,1171n,1181n,1187n,1193n,1201n,1213n,1217n,1223n,1229n,1231n,1237n,1249n,1259n,1277n,1279n,1283n,1289n,1291n,1297n,1301n,1303n,1307n,1319n,1321n,1327n,1361n,1367n,1373n,1381n,1399n,1409n,1423n,1427n,1429n,1433n,1439n,1447n,1451n,1453n,1459n,1471n,1481n,1483n,1487n,1489n,1493n,1499n,1511n,1523n,1531n,1543n,1549n,1553n,1559n,1567n,1571n,1579n,1583n,1597n];for(let t=0;t<e.length&&e[t]<=n;t++){const r=e[t];if(n===r)return!0;if(n%r===0n)return!1}let r=0n;const i=n-1n;let o=i;for(;o%2n===0n;)o/=2n,++r;const a=i/2n**r;do{let t=s(u(i,2n),a,n);if(1n===t||t===i)continue;let e=1;for(;e<r&&(t=s(t,2n,n),t!==i);){if(1n===t)return!1;e++}if(t!==i)return!1}while(--t);return!0}return n.abs=t,n.bitLength=e,n.eGcd=r,n.gcd=i,n.isProbablyPrime=c,n.lcm=function(n,e){return n=BigInt(n),e=BigInt(e),0n===n&&0n===e?0n:t(n*e)/i(n,e)},n.max=function(n,t){return(n=BigInt(n))>=(t=BigInt(t))?n:t},n.min=function(n,t){return(n=BigInt(n))>=(t=BigInt(t))?t:n},n.modInv=o,n.modPow=s,n.prime=function(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);return new Promise(e=>{const r=[],i=(i,o)=>{if(i.isPrime){for(let n=0;n<r.length;n++)r[n].terminate();for(;r.length;)r.pop();e(i.value)}else{const e=l(f(n,!0));try{o.postMessage({rnd:e,iterations:t,id:i.id})}catch(n){}}};{const n=d();for(let t=0;t<self.navigator.hardwareConcurrency-1;t++){const t=new Worker(n);t.onmessage=n=>i(n.data,t),r.push(t)}}for(let e=0;e<r.length;e++){const i=l(f(n,!0));r[e].postMessage({rnd:i,iterations:t,id:e})}})},n.primeSync=function(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);let e=0n;do{e=l(f(n,!0))}while(!m(e,t));return e},n.randBetween=u,n.randBits=f,n.randBytes=function(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);return new Promise((function(e){const r=new Uint8Array(n);self.crypto.getRandomValues(r),t&&(r[0]=128|r[0]),e(r)}))},n.randBytesSync=g,n.toZn=a,n}({});

@@ -1,1 +0,793 @@

function n(n){return(n=BigInt(n))>=0n?n:-n}function t(n){if(1n===(n=BigInt(n)))return 1;let t=1;do{t++}while((n>>=1n)>1n);return t}function e(n,t){if((n=BigInt(n))<=0n|(t=BigInt(t))<=0n)return NaN;let e=0n,r=1n,i=1n,o=0n;for(;0n!==n;){const s=t/n,a=t%n,u=e-i*s,c=r-o*s;t=n,n=a,e=i,r=o,i=u,o=c}return{b:t,x:e,y:r}}function r(t,e){if(t=n(t),e=n(e),0n===t)return e;if(0n===e)return t;let r=0n;for(;!(1n&(t|e));)t>>=1n,e>>=1n,r++;for(;!(1n&t);)t>>=1n;do{for(;!(1n&e);)e>>=1n;if(t>e){const n=t;t=e,e=n}e-=t}while(e);return t<<r}function i(t,e){return t=BigInt(t),e=BigInt(e),0n===t&&0n===e?0n:n(t*e)/r(t,e)}function o(n,t){return(n=BigInt(n))>=(t=BigInt(t))?n:t}function s(n,t){return(n=BigInt(n))>=(t=BigInt(t))?t:n}function a(n,t){const r=e(c(n,t),t);return 1n!==r.b?NaN:c(r.x,t)}function u(t,e,r){if(0n===(r=BigInt(r)))return NaN;if(1n===r)return 0n;if(t=c(t,r),(e=BigInt(e))<0n)return a(u(t,n(e),r),r);let i=1n;for(;e>0;)e%2n===1n&&(i=i*t%r),e/=2n,t=t**2n%r;return i}function c(n,t){return(t=BigInt(t))<=0?NaN:(n=BigInt(n)%t)<0?n+t:n}async function f(n,t=16){return"number"==typeof n&&(n=BigInt(n)),new Promise((e,r)=>{const i=new Worker(B());i.onmessage=n=>{i.terminate(),e(n.data.isPrime)},i.onmessageerror=n=>{r(n)},i.postMessage({rnd:n,iterations:t,id:0})})}function g(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);return new Promise(e=>{const r=[],i=(i,o)=>{if(i.isPrime){for(let n=0;n<r.length;n++)r[n].terminate();for(;r.length;)r.pop();e(i.value)}else{const e=h(w(n,!0));try{o.postMessage({rnd:e,iterations:t,id:i.id})}catch(n){}}};{const n=B();for(let t=0;t<self.navigator.hardwareConcurrency-1;t++){const t=new Worker(n);t.onmessage=n=>i(n.data,t),r.push(t)}}for(let e=0;e<r.length;e++){const i=h(w(n,!0));r[e].postMessage({rnd:i,iterations:t,id:e})}})}function l(n,t=16){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);let e=0n;do{e=h($(n/8,!0))}while(!I(e,t));return e}function d(n,e=1n){if(n<=e)throw new Error("max must be > min");const r=n-e,i=t(r);let o;do{o=h(w(i))}while(o>r);return o+e}function w(n,t=!1){if(n<1)throw new RangeError(`bitLength MUST be > 0 and it is ${n}`);const e=$(Math.ceil(n/8),!1),r=n%8;if(r&&(e[0]=e[0]&2**r-1),t){const n=r?2**(r-1):128;e[0]=e[0]|n}return e}function m(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);let e;return new Promise((function(r){e=new Uint8Array(n),self.crypto.getRandomValues(e),t&&(e[0]=128|e[0]),r(e)}))}function $(n,t=!1){if(n<1)throw new RangeError(`byteLength MUST be > 0 and it is ${n}`);let e;return e=new Uint8Array(n),self.crypto.getRandomValues(e),t&&(e[0]=128|e[0]),e}function h(n){let t=0n;for(const e of n.values()){const n=BigInt(e);t=(t<<BigInt(8))+n}return t}function B(){let n=`'use strict';const ${e.name}=${e.toString()};const ${a.name}=${a.toString()};const ${u.name}=${u.toString()};const ${c.name}=${c.toString()};const ${w.name}=${w.toString()};const ${$.name}=${$.toString()};const ${d.name}=${d.toString()};const ${f.name}=${I.toString()};${t.toString()}${h.toString()}`;return n+=`onmessage = ${async function(n){const t=await f(n.data.rnd,n.data.iterations);postMessage({isPrime:t,value:n.data.rnd,id:n.data.id})}.toString()};`,function(n){n=`(() => {${n}})()`;const t=new Blob([n],{type:"text/javascript"});return window.URL.createObjectURL(t)}(n)}function I(n,t=16){if(2n===n)return!0;if(0n===(1n&n)||1n===n)return!1;const e=[3n,5n,7n,11n,13n,17n,19n,23n,29n,31n,37n,41n,43n,47n,53n,59n,61n,67n,71n,73n,79n,83n,89n,97n,101n,103n,107n,109n,113n,127n,131n,137n,139n,149n,151n,157n,163n,167n,173n,179n,181n,191n,193n,197n,199n,211n,223n,227n,229n,233n,239n,241n,251n,257n,263n,269n,271n,277n,281n,283n,293n,307n,311n,313n,317n,331n,337n,347n,349n,353n,359n,367n,373n,379n,383n,389n,397n,401n,409n,419n,421n,431n,433n,439n,443n,449n,457n,461n,463n,467n,479n,487n,491n,499n,503n,509n,521n,523n,541n,547n,557n,563n,569n,571n,577n,587n,593n,599n,601n,607n,613n,617n,619n,631n,641n,643n,647n,653n,659n,661n,673n,677n,683n,691n,701n,709n,719n,727n,733n,739n,743n,751n,757n,761n,769n,773n,787n,797n,809n,811n,821n,823n,827n,829n,839n,853n,857n,859n,863n,877n,881n,883n,887n,907n,911n,919n,929n,937n,941n,947n,953n,967n,971n,977n,983n,991n,997n,1009n,1013n,1019n,1021n,1031n,1033n,1039n,1049n,1051n,1061n,1063n,1069n,1087n,1091n,1093n,1097n,1103n,1109n,1117n,1123n,1129n,1151n,1153n,1163n,1171n,1181n,1187n,1193n,1201n,1213n,1217n,1223n,1229n,1231n,1237n,1249n,1259n,1277n,1279n,1283n,1289n,1291n,1297n,1301n,1303n,1307n,1319n,1321n,1327n,1361n,1367n,1373n,1381n,1399n,1409n,1423n,1427n,1429n,1433n,1439n,1447n,1451n,1453n,1459n,1471n,1481n,1483n,1487n,1489n,1493n,1499n,1511n,1523n,1531n,1543n,1549n,1553n,1559n,1567n,1571n,1579n,1583n,1597n];for(let t=0;t<e.length&&e[t]<=n;t++){const r=e[t];if(n===r)return!0;if(n%r===0n)return!1}let r=0n;const i=n-1n;let o=i;for(;o%2n===0n;)o/=2n,++r;const s=i/2n**r;do{let t=u(d(i,2n),s,n);if(1n===t||t===i)continue;let e=1;for(;e<r&&(t=u(t,2n,n),t!==i);){if(1n===t)return!1;e++}if(t!==i)return!1}while(--t);return!0}export{n as abs,t as bitLength,e as eGcd,r as gcd,f as isProbablyPrime,i as lcm,o as max,s as min,a as modInv,u as modPow,g as prime,l as primeSync,d as randBetween,w as randBits,m as randBytes,$ as randBytesSync,c as toZn};
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
function abs (a) {
a = BigInt(a)
return (a >= 0n) ? a : -a
}
/**
* Returns the bitlength of a number
*
* @param {number|bigint} a
* @returns {number} - the bit length
*/
function bitLength (a) {
a = BigInt(a)
if (a === 1n) { return 1 }
let bits = 1
do {
bits++
} while ((a >>= 1n) > 1n)
return bits
}
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b).
*/
function eGcd (a, b) {
a = BigInt(a)
b = BigInt(b)
if (a <= 0n | b <= 0n) { return NaN } // a and b MUST be positive
let x = 0n
let y = 1n
let u = 1n
let v = 0n
while (a !== 0n) {
const q = b / a
const r = b % a
const m = x - (u * q)
const n = y - (v * q)
b = a
a = r
x = u
y = v
u = m
v = n
}
return {
b: b,
x: x,
y: y
}
}
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
function gcd (a, b) {
a = abs(a)
b = abs(b)
if (a === 0n) { return b } else if (b === 0n) { return a }
let shift = 0n
while (!((a | b) & 1n)) {
a >>= 1n
b >>= 1n
shift++
}
while (!(a & 1n)) a >>= 1n
do {
while (!(b & 1n)) b >>= 1n
if (a > b) {
const x = a
a = b
b = x
}
b -= a
} while (b)
// rescale
return a << shift
}
/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
function lcm (a, b) {
a = BigInt(a)
b = BigInt(b)
if (a === 0n && b === 0n) { return 0n }
return abs(a * b) / gcd(a, b)
}
/**
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} maximum of numbers a and b
*/
function max (a, b) {
a = BigInt(a)
b = BigInt(b)
return (a >= b) ? a : b
}
/**
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} minimum of numbers a and b
*/
function min (a, b) {
a = BigInt(a)
b = BigInt(b)
return (a >= b) ? b : a
}
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint} the inverse modulo n or NaN if it does not exist
*/
function modInv (a, n) {
const egcd = eGcd(toZn(a, n), n)
if (egcd.b !== 1n) {
return NaN // modular inverse does not exist
} else {
return toZn(egcd.x, n)
}
}
/**
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
*
* @param {number|bigint} b base
* @param {number|bigint} e exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} b**e mod n
*/
function modPow (b, e, n) {
n = BigInt(n)
if (n === 0n) { return NaN } else if (n === 1n) { return 0n }
b = toZn(b, n)
e = BigInt(e)
if (e < 0n) {
return modInv(modPow(b, abs(e), n), n)
}
let r = 1n
while (e > 0) {
if ((e % 2n) === 1n) {
r = (r * b) % n
}
e = e / 2n
b = b ** 2n % n
}
return r
}
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
function toZn (a, n) {
n = BigInt(n)
if (n <= 0) { return NaN }
a = BigInt(a) % n
return (a < 0) ? a + n : a
}
/**
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
* iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
*
* @param {number | bigint} w An integer to be tested for primality
* @param {number} [iterations = 16] The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3
*
* @return {Promise<boolean>} A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
*/
async function isProbablyPrime (w, iterations = 16) {
if (typeof w === 'number') {
w = BigInt(w)
}
/* eslint-disable no-lone-blocks */
{ // browser
return new Promise((resolve, reject) => {
const worker = new Worker(_isProbablyPrimeWorkerUrl())
worker.onmessage = (event) => {
worker.terminate()
resolve(event.data.isPrime)
}
worker.onmessageerror = (event) => {
reject(event)
}
worker.postMessage({
rnd: w,
iterations: iterations,
id: 0
})
})
}
/* eslint-enable no-lone-blocks */
}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
* main process, and it can be much faster (if several cores or cpu are available).
* The node version can also use worker_threads if they are available (enabled by default with Node 11 and
* and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {Promise<bigint>} A promise that resolves to a bigint probable prime of bitLength bits.
*/
function prime (bitLength, iterations = 16) {
if (bitLength < 1) { throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`) }
return new Promise((resolve) => {
const workerList = []
const _onmessage = (msg, newWorker) => {
if (msg.isPrime) {
// if a prime number has been found, stop all the workers, and return it
for (let j = 0; j < workerList.length; j++) {
workerList[j].terminate()
}
while (workerList.length) {
workerList.pop()
}
resolve(msg.value)
} else { // if a composite is found, make the worker test another random number
const buf = randBits(bitLength, true)
const rnd = fromBuffer(buf)
try {
newWorker.postMessage({
rnd: rnd,
iterations: iterations,
id: msg.id
})
} catch (error) {
// The worker has already terminated. There is nothing to handle here
}
}
}
/* eslint-disable no-lone-blocks */
{ // browser
const workerURL = _isProbablyPrimeWorkerUrl()
for (let i = 0; i < self.navigator.hardwareConcurrency - 1; i++) {
const newWorker = new Worker(workerURL)
newWorker.onmessage = (event) => _onmessage(event.data, newWorker)
workerList.push(newWorker)
}
}
/* eslint-enable no-lone-blocks */
for (let i = 0; i < workerList.length; i++) {
const buf = randBits(bitLength, true)
const rnd = fromBuffer(buf)
workerList[i].postMessage({
rnd: rnd,
iterations: iterations,
id: i
})
}
})
}
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
* The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
*
* @param {number} bitLength The required bit length for the generated prime
* @param {number} [iterations = 16] The number of iterations for the Miller-Rabin Probabilistic Primality Test
*
* @returns {bigint} A bigint probable prime of bitLength bits.
*/
function primeSync (bitLength, iterations = 16) {
if (bitLength < 1) { throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`) }
let rnd = 0n
do {
rnd = fromBuffer(randBits(bitLength, true))
} while (!_isProbablyPrime(rnd, iterations))
return rnd
}
/**
* Returns a cryptographically secure random integer between [min,max]
* @param {bigint} max Returned value will be <= max
* @param {bigint} [min = BigInt(1)] Returned value will be >= min
*
* @returns {bigint} A cryptographically secure random bigint between [min,max]
*/
function randBetween (max, min = 1n) {
if (max <= min) throw new Error('max must be > min')
const interval = max - min
const bitLen = bitLength(interval)
let rnd
do {
const buf = randBits(bitLen)
rnd = fromBuffer(buf)
} while (rnd > interval)
return rnd + min
}
/**
* Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} bitLength The desired number of random bits
* @param {boolean} [forceLength = false] If we want to force the output to have a specific bit length. It basically forces the msb to be 1
*
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
*/
function randBits (bitLength, forceLength = false) {
if (bitLength < 1) {
throw new RangeError(`bitLength MUST be > 0 and it is ${bitLength}`)
}
const byteLength = Math.ceil(bitLength / 8)
const rndBytes = randBytesSync(byteLength, false)
const bitLengthMod8 = bitLength % 8
if (bitLengthMod8) {
// Fill with 0's the extra bits
rndBytes[0] = rndBytes[0] & (2 ** bitLengthMod8 - 1)
}
if (forceLength) {
const mask = bitLengthMod8 ? 2 ** (bitLengthMod8 - 1) : 128
rndBytes[0] = rndBytes[0] | mask
}
return rndBytes
}
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Promise<Buffer | Uint8Array>} A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
*/
function randBytes (byteLength, forceLength = false) {
if (byteLength < 1) { throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`) }
/* eslint-disable no-lone-blocks */
{ // browser
return new Promise(function (resolve) {
const buf = new Uint8Array(byteLength)
self.crypto.getRandomValues(buf)
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
if (forceLength) { buf[0] = buf[0] | 128 }
resolve(buf)
})
}
/* eslint-enable no-lone-blocks */
}
/**
* Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
*
* @param {number} byteLength The desired number of random bytes
* @param {boolean} [forceLength = false] If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1
*
* @returns {Buffer | Uint8Array} A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
*/
function randBytesSync (byteLength, forceLength = false) {
if (byteLength < 1) { throw new RangeError(`byteLength MUST be > 0 and it is ${byteLength}`) }
let buf
/* eslint-disable no-lone-blocks */
{ // browser
buf = new Uint8Array(byteLength)
self.crypto.getRandomValues(buf)
}
/* eslint-enable no-lone-blocks */
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength
if (forceLength) { buf[0] = buf[0] | 128 }
return buf
}
/* HELPER FUNCTIONS */
function fromBuffer (buf) {
let ret = 0n
for (const i of buf.values()) {
const bi = BigInt(i)
ret = (ret << BigInt(8)) + bi
}
return ret
}
function _isProbablyPrimeWorkerUrl () {
// Let's us first add all the required functions
let workerCode = `'use strict';const ${eGcd.name}=${eGcd.toString()};const ${modInv.name}=${modInv.toString()};const ${modPow.name}=${modPow.toString()};const ${toZn.name}=${toZn.toString()};const ${randBits.name}=${randBits.toString()};const ${randBytesSync.name}=${randBytesSync.toString()};const ${randBetween.name}=${randBetween.toString()};const ${isProbablyPrime.name}=${_isProbablyPrime.toString()};${bitLength.toString()}${fromBuffer.toString()}`
const onmessage = async function (event) { // Let's start once we are called
// event.data = {rnd: <bigint>, iterations: <number>}
const isPrime = await isProbablyPrime(event.data.rnd, event.data.iterations)
postMessage({
isPrime: isPrime,
value: event.data.rnd,
id: event.data.id
})
}
workerCode += `onmessage = ${onmessage.toString()};`
return _workerUrl(workerCode)
}
function _workerUrl (workerCode) {
workerCode = `(() => {${workerCode}})()` // encapsulate IIFE
const _blob = new Blob([workerCode], { type: 'text/javascript' })
return window.URL.createObjectURL(_blob)
}
function _isProbablyPrime (w, iterations = 16) {
/*
PREFILTERING. Even values but 2 are not primes, so don't test.
1 is not a prime and the M-R algorithm needs w>1.
*/
if (w === 2n) { return true } else if ((w & 1n) === 0n || w === 1n) { return false }
/*
Test if any of the first 250 small primes are a factor of w. 2 is not tested because it was already tested above.
*/
const firstPrimes = [
3n,
5n,
7n,
11n,
13n,
17n,
19n,
23n,
29n,
31n,
37n,
41n,
43n,
47n,
53n,
59n,
61n,
67n,
71n,
73n,
79n,
83n,
89n,
97n,
101n,
103n,
107n,
109n,
113n,
127n,
131n,
137n,
139n,
149n,
151n,
157n,
163n,
167n,
173n,
179n,
181n,
191n,
193n,
197n,
199n,
211n,
223n,
227n,
229n,
233n,
239n,
241n,
251n,
257n,
263n,
269n,
271n,
277n,
281n,
283n,
293n,
307n,
311n,
313n,
317n,
331n,
337n,
347n,
349n,
353n,
359n,
367n,
373n,
379n,
383n,
389n,
397n,
401n,
409n,
419n,
421n,
431n,
433n,
439n,
443n,
449n,
457n,
461n,
463n,
467n,
479n,
487n,
491n,
499n,
503n,
509n,
521n,
523n,
541n,
547n,
557n,
563n,
569n,
571n,
577n,
587n,
593n,
599n,
601n,
607n,
613n,
617n,
619n,
631n,
641n,
643n,
647n,
653n,
659n,
661n,
673n,
677n,
683n,
691n,
701n,
709n,
719n,
727n,
733n,
739n,
743n,
751n,
757n,
761n,
769n,
773n,
787n,
797n,
809n,
811n,
821n,
823n,
827n,
829n,
839n,
853n,
857n,
859n,
863n,
877n,
881n,
883n,
887n,
907n,
911n,
919n,
929n,
937n,
941n,
947n,
953n,
967n,
971n,
977n,
983n,
991n,
997n,
1009n,
1013n,
1019n,
1021n,
1031n,
1033n,
1039n,
1049n,
1051n,
1061n,
1063n,
1069n,
1087n,
1091n,
1093n,
1097n,
1103n,
1109n,
1117n,
1123n,
1129n,
1151n,
1153n,
1163n,
1171n,
1181n,
1187n,
1193n,
1201n,
1213n,
1217n,
1223n,
1229n,
1231n,
1237n,
1249n,
1259n,
1277n,
1279n,
1283n,
1289n,
1291n,
1297n,
1301n,
1303n,
1307n,
1319n,
1321n,
1327n,
1361n,
1367n,
1373n,
1381n,
1399n,
1409n,
1423n,
1427n,
1429n,
1433n,
1439n,
1447n,
1451n,
1453n,
1459n,
1471n,
1481n,
1483n,
1487n,
1489n,
1493n,
1499n,
1511n,
1523n,
1531n,
1543n,
1549n,
1553n,
1559n,
1567n,
1571n,
1579n,
1583n,
1597n
]
for (let i = 0; i < firstPrimes.length && (firstPrimes[i] <= w); i++) {
const p = firstPrimes[i]
if (w === p) {
return true
} else if (w % p === 0n) {
return false
}
}
/*
1. Let a be the largest integer such that 2**a divides w−1.
2. m = (w−1) / 2**a.
3. wlen = len (w).
4. For i = 1 to iterations do
4.1 Obtain a string b of wlen bits from an RBG.
Comment: Ensure that 1 < b < w−1.
4.2 If ((b ≤ 1) or (b ≥ w−1)), then go to step 4.1.
4.3 z = b**m mod w.
4.4 If ((z = 1) or (z = w − 1)), then go to step 4.7.
4.5 For j = 1 to a − 1 do.
4.5.1 z = z**2 mod w.
4.5.2 If (z = w−1), then go to step 4.7.
4.5.3 If (z = 1), then go to step 4.6.
4.6 Return COMPOSITE.
4.7 Continue.
Comment: Increment i for the do-loop in step 4.
5. Return PROBABLY PRIME.
*/
let a = 0n
const d = w - 1n
let aux = d
while (aux % 2n === 0n) {
aux /= 2n
++a
}
const m = d / (2n ** a)
// /* eslint-disable no-labels */
// loop: do {
// const b = randBetween(w - 1n, 2n)
// let z = modPow(b, m, w)
// if (z === 1n || z === w - 1n) { continue }
// for (let j = 1; j < a; j++) {
// z = modPow(z, 2n, w)
// if (z === w - 1n) { continue loop }
// if (z === 1n) { break }
// }
// return false
// } while (--iterations)
// /* eslint-enable no-labels */
// return true
do {
const b = randBetween(d, 2n)
let z = modPow(b, m, w)
if (z === 1n || z === d) { continue }
let j = 1
while (j < a) {
z = modPow(z, 2n, w)
if (z === d) { break }
if (z === 1n) { return false }
j++
}
if (z !== d) {
return false
}
} while (--iterations)
return true
}
export { abs, bitLength, eGcd, gcd, isProbablyPrime, lcm, max, min, modInv, modPow, prime, primeSync, randBetween, randBits, randBytes, randBytesSync, toZn }

@@ -116,3 +116,3 @@ import { bitLength, eGcd, modInv, modPow, toZn } from 'bigint-mod-arith'

do {
rnd = fromBuffer(randBytesSync(bitLength / 8, true))
rnd = fromBuffer(randBits(bitLength, true))
} while (!_isProbablyPrime(rnd, iterations))

@@ -179,7 +179,6 @@ return rnd

let buf
/* eslint-disable no-lone-blocks */
{ // browser
return new Promise(function (resolve) {
buf = new Uint8Array(byteLength)
const buf = new Uint8Array(byteLength)
self.crypto.getRandomValues(buf)

@@ -191,3 +190,3 @@ // If fixed length is required we put the first bit to 1 -> to get the necessary bitLength

}
/* eslint-disable no-lone-blocks */
/* eslint-enable no-lone-blocks */
}

@@ -207,2 +206,3 @@

let buf
/* eslint-disable no-lone-blocks */
{ // browser

@@ -212,2 +212,3 @@ buf = new Uint8Array(byteLength)

}
/* eslint-enable no-lone-blocks */
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength

@@ -214,0 +215,0 @@ if (forceLength) { buf[0] = buf[0] | 128 }

@@ -68,3 +68,3 @@ 'use strict'

do {
rnd = fromBuffer(randBytesSync(bitLength / 8, true))
rnd = fromBuffer(randBits(bitLength, true))
} while (!_isProbablyPrime(rnd, iterations))

@@ -135,3 +135,3 @@ return new Promise((resolve) => { resolve(rnd) })

do {
rnd = fromBuffer(randBytesSync(bitLength / 8, true))
rnd = fromBuffer(randBits(bitLength, true))
} while (!_isProbablyPrime(rnd, iterations))

@@ -198,7 +198,6 @@ return rnd

let buf
/* eslint-disable no-lone-blocks */
{ // node
const crypto = require('crypto')
buf = Buffer.alloc(byteLength)
const buf = Buffer.alloc(byteLength)
return crypto.randomFill(buf, function (resolve) {

@@ -210,3 +209,3 @@ // If fixed length is required we put the first bit to 1 -> to get the necessary bitLength

}
/* eslint-disable no-lone-blocks */
/* eslint-enable no-lone-blocks */
}

@@ -226,2 +225,3 @@

let buf
/* eslint-disable no-lone-blocks */
{ // node

@@ -232,2 +232,3 @@ const crypto = require('crypto')

}
/* eslint-enable no-lone-blocks */
// If fixed length is required we put the first bit to 1 -> to get the necessary bitLength

@@ -585,2 +586,3 @@ if (forceLength) { buf[0] = buf[0] | 128 }

let _useWorkers = true // The following is just to check whether Node.js can use workers
/* eslint-disable no-lone-blocks */
{ // Node.js

@@ -600,2 +602,3 @@ _useWorkers = (function _workers () {

}
/* eslint-enable no-lone-blocks */

@@ -602,0 +605,0 @@ if (_useWorkers) { // node.js with support for workers

{
"name": "bigint-crypto-utils",
"version": "2.5.4",
"version": "2.5.6",
"description": "Utils for working with cryptography using native JS implementation of BigInt. It includes arbitrary precision modular arithmetic, cryptographically secure random numbers and strong probable prime generation/testing.",

@@ -56,3 +56,3 @@ "keywords": [

"/lib/index.browser.bundle.js",
"/lib/index.browser.bundle.mod.js"
"/lib/index.browser.bundle.min.mod.js"
]

@@ -59,0 +59,0 @@ },

@@ -21,3 +21,3 @@ [![JavaScript Style Guide](https://img.shields.io/badge/code_style-standard-brightgreen.svg)](https://standardjs.com)

For web browsers, you can also directly download the [IIFE bundle](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.js) or the [ES6 bundle module](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.mod.js) from GitHub.
For web browsers, you can also directly download the [IIFE bundle](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.js) or the [ES6 bundle module](https://raw.githubusercontent.com/juanelas/bigint-crypto-utils/master/lib/index.browser.bundle.min.mod.js) from GitHub.

@@ -100,2 +100,73 @@ ## Usage examples

### Functions
<dl>
<dt><a href="#abs">abs(a)</a> ⇒ <code>bigint</code></dt>
<dd><p>Absolute value. abs(a)==a if a&gt;=0. abs(a)==-a if a&lt;0</p>
</dd>
<dt><a href="#bitLength">bitLength(a)</a> ⇒ <code>number</code></dt>
<dd><p>Returns the bitlength of a number</p>
</dd>
<dt><a href="#eGcd">eGcd(a, b)</a> ⇒ <code><a href="#egcdReturn">egcdReturn</a></code></dt>
<dd><p>An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
</dd>
<dt><a href="#gcd">gcd(a, b)</a> ⇒ <code>bigint</code></dt>
<dd><p>Greatest-common divisor of two integers based on the iterative binary algorithm.</p>
</dd>
<dt><a href="#lcm">lcm(a, b)</a> ⇒ <code>bigint</code></dt>
<dd><p>The least common multiple computed as abs(a*b)/gcd(a,b)</p>
</dd>
<dt><a href="#max">max(a, b)</a> ⇒ <code>bigint</code></dt>
<dd><p>Maximum. max(a,b)==a if a&gt;=b. max(a,b)==b if a&lt;=b</p>
</dd>
<dt><a href="#min">min(a, b)</a> ⇒ <code>bigint</code></dt>
<dd><p>Minimum. min(a,b)==b if a&gt;=b. min(a,b)==a if a&lt;=b</p>
</dd>
<dt><a href="#modInv">modInv(a, n)</a> ⇒ <code>bigint</code></dt>
<dd><p>Modular inverse.</p>
</dd>
<dt><a href="#modPow">modPow(b, e, n)</a> ⇒ <code>bigint</code></dt>
<dd><p>Modular exponentiation b**e mod n. Currently using the right-to-left binary method</p>
</dd>
<dt><a href="#toZn">toZn(a, n)</a> ⇒ <code>bigint</code></dt>
<dd><p>Finds the smallest positive element that is congruent to a in modulo n</p>
</dd>
<dt><a href="#isProbablyPrime">isProbablyPrime(w, [iterations])</a> ⇒ <code>Promise.&lt;boolean&gt;</code></dt>
<dd><p>The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)</p>
</dd>
<dt><a href="#prime">prime(bitLength, [iterations])</a> ⇒ <code>Promise.&lt;bigint&gt;</code></dt>
<dd><p>A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
main process, and it can be much faster (if several cores or cpu are available).
The node version can also use worker_threads if they are available (enabled by default with Node 11 and
and can be enabled at runtime executing node --experimental-worker with node &gt;=10.5.0).</p>
</dd>
<dt><a href="#primeSync">primeSync(bitLength, [iterations])</a> ⇒ <code>bigint</code></dt>
<dd><p>A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
The sync version is NOT RECOMMENDED since it won&#39;t use workers and thus it&#39;ll be slower and may freeze thw window in browser&#39;s javascript. Please consider using prime() instead.</p>
</dd>
<dt><a href="#randBetween">randBetween(max, [min])</a> ⇒ <code>bigint</code></dt>
<dd><p>Returns a cryptographically secure random integer between [min,max]</p>
</dd>
<dt><a href="#randBits">randBits(bitLength, [forceLength])</a> ⇒ <code>Buffer</code> | <code>Uint8Array</code></dt>
<dd><p>Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()</p>
</dd>
<dt><a href="#randBytes">randBytes(byteLength, [forceLength])</a> ⇒ <code>Promise.&lt;(Buffer|Uint8Array)&gt;</code></dt>
<dd><p>Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()</p>
</dd>
<dt><a href="#randBytesSync">randBytesSync(byteLength, [forceLength])</a> ⇒ <code>Buffer</code> | <code>Uint8Array</code></dt>
<dd><p>Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()</p>
</dd>
</dl>
### Typedefs
<dl>
<dt><a href="#egcdReturn">egcdReturn</a> : <code>Object</code></dt>
<dd><p>A triple (g, x, y), such that ax + by = g = gcd(a, b).</p>
</dd>
</dl>
<a name="abs"></a>

@@ -231,2 +302,99 @@

<a name="isProbablyPrime"></a>
### isProbablyPrime(w, [iterations]) ⇒ <code>Promise.&lt;boolean&gt;</code>
The test first tries if any of the first 250 small primes are a factor of the input number and then passes several
iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)
**Kind**: global function
**Returns**: <code>Promise.&lt;boolean&gt;</code> - A promise that resolves to a boolean that is either true (a probably prime number) or false (definitely composite)
| Param | Type | Default | Description |
| --- | --- | --- | --- |
| w | <code>number</code> \| <code>bigint</code> | | An integer to be tested for primality |
| [iterations] | <code>number</code> | <code>16</code> | The number of iterations for the primality test. The value shall be consistent with Table C.1, C.2 or C.3 |
<a name="prime"></a>
### prime(bitLength, [iterations]) ⇒ <code>Promise.&lt;bigint&gt;</code>
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI
main process, and it can be much faster (if several cores or cpu are available).
The node version can also use worker_threads if they are available (enabled by default with Node 11 and
and can be enabled at runtime executing node --experimental-worker with node >=10.5.0).
**Kind**: global function
**Returns**: <code>Promise.&lt;bigint&gt;</code> - A promise that resolves to a bigint probable prime of bitLength bits.
| Param | Type | Default | Description |
| --- | --- | --- | --- |
| bitLength | <code>number</code> | | The required bit length for the generated prime |
| [iterations] | <code>number</code> | <code>16</code> | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
<a name="primeSync"></a>
### primeSync(bitLength, [iterations]) ⇒ <code>bigint</code>
A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.
The sync version is NOT RECOMMENDED since it won't use workers and thus it'll be slower and may freeze thw window in browser's javascript. Please consider using prime() instead.
**Kind**: global function
**Returns**: <code>bigint</code> - A bigint probable prime of bitLength bits.
| Param | Type | Default | Description |
| --- | --- | --- | --- |
| bitLength | <code>number</code> | | The required bit length for the generated prime |
| [iterations] | <code>number</code> | <code>16</code> | The number of iterations for the Miller-Rabin Probabilistic Primality Test |
<a name="randBetween"></a>
### randBetween(max, [min]) ⇒ <code>bigint</code>
Returns a cryptographically secure random integer between [min,max]
**Kind**: global function
**Returns**: <code>bigint</code> - A cryptographically secure random bigint between [min,max]
| Param | Type | Default | Description |
| --- | --- | --- | --- |
| max | <code>bigint</code> | | Returned value will be <= max |
| [min] | <code>bigint</code> | <code>BigInt(1)</code> | Returned value will be >= min |
<a name="randBits"></a>
### randBits(bitLength, [forceLength]) ⇒ <code>Buffer</code> \| <code>Uint8Array</code>
Secure random bits for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
**Kind**: global function
**Returns**: <code>Buffer</code> \| <code>Uint8Array</code> - A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bits
| Param | Type | Default | Description |
| --- | --- | --- | --- |
| bitLength | <code>number</code> | | The desired number of random bits |
| [forceLength] | <code>boolean</code> | <code>false</code> | If we want to force the output to have a specific bit length. It basically forces the msb to be 1 |
<a name="randBytes"></a>
### randBytes(byteLength, [forceLength]) ⇒ <code>Promise.&lt;(Buffer\|Uint8Array)&gt;</code>
Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
**Kind**: global function
**Returns**: <code>Promise.&lt;(Buffer\|Uint8Array)&gt;</code> - A promise that resolves to a Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
| Param | Type | Default | Description |
| --- | --- | --- | --- |
| byteLength | <code>number</code> | | The desired number of random bytes |
| [forceLength] | <code>boolean</code> | <code>false</code> | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
<a name="randBytesSync"></a>
### randBytesSync(byteLength, [forceLength]) ⇒ <code>Buffer</code> \| <code>Uint8Array</code>
Secure random bytes for both node and browsers. Node version uses crypto.randomFill() and browser one self.crypto.getRandomValues()
**Kind**: global function
**Returns**: <code>Buffer</code> \| <code>Uint8Array</code> - A Buffer/UInt8Array (Node.js/Browser) filled with cryptographically secure random bytes
| Param | Type | Default | Description |
| --- | --- | --- | --- |
| byteLength | <code>number</code> | | The desired number of random bytes |
| [forceLength] | <code>boolean</code> | <code>false</code> | If we want to force the output to have a bit length of 8*byteLength. It basically forces the msb to be 1 |
<a name="egcdReturn"></a>

@@ -233,0 +401,0 @@

/**
* A triple (g, x, y), such that ax + by = g = gcd(a, b).
*/
export type egcdReturn = {
g: bigint;
x: bigint;
y: bigint;
};
/**
* Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0
*
* @param {number|bigint} a
*
* @returns {bigint} the absolute value of a
*/
export function abs(a: number | bigint): bigint;
/**
* Returns the bitlength of a number
*
* @param {number|bigint} a
* @returns {number} - the bit length
*/
export function bitLength(a: number | bigint): number;
/**
* @typedef {Object} egcdReturn A triple (g, x, y), such that ax + by = g = gcd(a, b).
* @property {bigint} g
* @property {bigint} x
* @property {bigint} y
*/
/**
* An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm.
* Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {egcdReturn} A triple (g, x, y), such that ax + by = g = gcd(a, b).
*/
export function eGcd(a: number | bigint, b: number | bigint): egcdReturn;
/**
* Greatest-common divisor of two integers based on the iterative binary algorithm.
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The greatest common divisor of a and b
*/
export function gcd(a: number | bigint, b: number | bigint): bigint;
/**
* The test first tries if any of the first 250 small primes are a factor of the input number and then passes several

@@ -12,2 +60,47 @@ * iterations of Miller-Rabin Probabilistic Primality Test (FIPS 186-4 C.3.1)

/**
* The least common multiple computed as abs(a*b)/gcd(a,b)
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} The least common multiple of a and b
*/
export function lcm(a: number | bigint, b: number | bigint): bigint;
/**
* Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} maximum of numbers a and b
*/
export function max(a: number | bigint, b: number | bigint): bigint;
/**
* Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b
*
* @param {number|bigint} a
* @param {number|bigint} b
*
* @returns {bigint} minimum of numbers a and b
*/
export function min(a: number | bigint, b: number | bigint): bigint;
/**
* Modular inverse.
*
* @param {number|bigint} a The number to find an inverse for
* @param {number|bigint} n The modulo
*
* @returns {bigint} the inverse modulo n or NaN if it does not exist
*/
export function modInv(a: number | bigint, n: number | bigint): bigint;
/**
* Modular exponentiation b**e mod n. Currently using the right-to-left binary method
*
* @param {number|bigint} b base
* @param {number|bigint} e exponent
* @param {number|bigint} n modulo
*
* @returns {bigint} b**e mod n
*/
export function modPow(b: number | bigint, e: number | bigint, n: number | bigint): bigint;
/**
* A probably-prime (Miller-Rabin), cryptographically-secure, random-number generator.

@@ -70,2 +163,9 @@ * The browser version uses web workers to parallelise prime look up. Therefore, it does not lock the UI

export function randBytesSync(byteLength: number, forceLength?: boolean): Uint8Array | Buffer;
export { abs, bitLength, eGcd, gcd, lcm, max, min, modInv, modPow, toZn } from "bigint-mod-arith";
/**
* Finds the smallest positive element that is congruent to a in modulo n
* @param {number|bigint} a An integer
* @param {number|bigint} n The modulo
*
* @returns {bigint} The smallest positive representation of a in modulo n
*/
export function toZn(a: number | bigint, n: number | bigint): bigint;
SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc