Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

bigint-crypto-utils

Package Overview
Dependencies
Maintainers
1
Versions
65
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

bigint-crypto-utils

Utils for working with cryptography using native JS implementation of BigInt. It includes arbitrary precision modular arithmetic, cryptographically secure random numbers and strong probable prime generation/testing.

  • 2.5.4
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
57K
decreased by-42.3%
Maintainers
1
Weekly downloads
 
Created
Source

JavaScript Style Guide

bigint-crypto-utils

Utils for working with cryptography using native JS (ES-2020) implementation of BigInt. It includes some extra functions to work with modular arithmetic along with secure random numbers and a fast strong probable prime generator/tester (parallelized multi-threaded Miller-Rabin primality test). It can be used by any Web Browser or webview supporting BigInt and with Node.js (>=10.4.0). In the latter case, for multi-threaded primality tests, you should use Node.js v11 or newer or enable at runtime with node --experimental-worker with Node.js version >= 10.5.0 and < 11.

The operations supported on BigInts are not constant time. BigInt can be therefore unsuitable for use in cryptography. Many platforms provide native support for cryptography, such as Web Cryptography API or Node.js Crypto.

Installation

bigint-crypto-utils is distributed for web browsers and/or webviews supporting BigInt as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.

bigint-crypto-utils can be imported to your project with npm:

npm install bigint-crypto-utils

NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.

For web browsers, you can also directly download the IIFE bundle or the ES6 bundle module from GitHub.

Usage examples

Import your module as :

  • Node.js
    const bigintCryptoUtils = require('bigint-crypto-utils')
    ... // your code here
    
  • JavaScript native project
    import * as bigintCryptoUtils from 'bigint-crypto-utils'
    ... // your code here
    
  • JavaScript native browser ES6 mod
    <script type="module">
       import * as bigintCryptoUtils from 'lib/index.browser.bundle.mod.js'  // Use you actual path to the broser mod bundle
       ... // your code here
     </script>
    
  • JavaScript native browser IIFE
    <script src="../../lib/index.browser.bundle.js"></script> <!-- Use you actual path to the browser bundle -->
    <script>
      ... // your code here
    </script>
    
  • TypeScript
    import * as bigintCryptoUtils from 'bigint-crypto-utils'
    ... // your code here
    

    BigInt is ES-2020. In order to use it with TypeScript you should set lib (and probably also target and module) to esnext in tsconfig.json.

And you could use it like in the following:

/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
or the shorter new no-so-linter-friendly syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
*/
const a = BigInt('5')
const b = BigInt('2')
const n = 19n

console.log(bigintCryptoUtils.modPow(a, b, n)) // prints 6

console.log(bigintCryptoUtils.modInv(2n, 5n)) // prints 3

console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))) // prints 2

console.log(bigintCryptoUtils.randBetween(2n ** 256n)) // Prints a cryptographically secure random number between 1 and 2**256 bits.

async function primeTesting () {
  // Output of a probable prime of 2048 bits
  console.log(await bigintCryptoUtils.prime(2048))

  // Testing if a number is a probable prime (Miller-Rabin)
  const number = 27n
  const isPrime = await bigintCryptoUtils.isProbablyPrime(number)
  if (isPrime) {
    console.log(`${number} is prime`)
  } else {
    console.log(`${number} is composite`)
  }
}

primeTesting()

API reference documentation

abs(a) ⇒ bigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

Kind: global function
Returns: bigint - the absolute value of a

ParamType
anumber | bigint

bitLength(a) ⇒ number

Returns the bitlength of a number

Kind: global function
Returns: number - - the bit length

ParamType
anumber | bigint

eGcd(a, b) ⇒ egcdReturn

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global function
Returns: egcdReturn - A triple (g, x, y), such that ax + by = g = gcd(a, b).

ParamType
anumber | bigint
bnumber | bigint

gcd(a, b) ⇒ bigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

Kind: global function
Returns: bigint - The greatest common divisor of a and b

ParamType
anumber | bigint
bnumber | bigint

lcm(a, b) ⇒ bigint

The least common multiple computed as abs(a*b)/gcd(a,b)

Kind: global function
Returns: bigint - The least common multiple of a and b

ParamType
anumber | bigint
bnumber | bigint

max(a, b) ⇒ bigint

Maximum. max(a,b)==a if a>=b. max(a,b)==b if a<=b

Kind: global function
Returns: bigint - maximum of numbers a and b

ParamType
anumber | bigint
bnumber | bigint

min(a, b) ⇒ bigint

Minimum. min(a,b)==b if a>=b. min(a,b)==a if a<=b

Kind: global function
Returns: bigint - minimum of numbers a and b

ParamType
anumber | bigint
bnumber | bigint

modInv(a, n) ⇒ bigint

Modular inverse.

Kind: global function
Returns: bigint - the inverse modulo n or NaN if it does not exist

ParamTypeDescription
anumber | bigintThe number to find an inverse for
nnumber | bigintThe modulo

modPow(b, e, n) ⇒ bigint

Modular exponentiation b**e mod n. Currently using the right-to-left binary method

Kind: global function
Returns: bigint - b**e mod n

ParamTypeDescription
bnumber | bigintbase
enumber | bigintexponent
nnumber | bigintmodulo

toZn(a, n) ⇒ bigint

Finds the smallest positive element that is congruent to a in modulo n

Kind: global function
Returns: bigint - The smallest positive representation of a in modulo n

ParamTypeDescription
anumber | bigintAn integer
nnumber | bigintThe modulo

egcdReturn : Object

A triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global typedef
Properties

NameType
gbigint
xbigint
ybigint

Keywords

FAQs

Package last updated on 07 Apr 2020

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc