Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

bigint-mod-arith

Package Overview
Dependencies
Maintainers
1
Versions
27
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

bigint-mod-arith

Some additional common functions for modular arithmetics using native JS (stage 3) implementation of BigInt

  • 1.3.0
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

bigint-mod-arith

Some extra functions to work with modular arithmetics using native JS (stage 3) implementation of BigInt. It can be used by any Web Browser or webview supporting BigInt and with Node.js (>=10.4.0).

If you are looking for a cryptographically-secure random generator and for strong probable primes (generation and testing), you may be interested in bigint-secrets

The operations supported on BigInts are not constant time. BigInt can be therefore unsuitable for use in cryptography. Many platforms provide native support for cryptography, such as Web Cryptography API or Node.js Crypto.

Installation

bigint-mod-arith is distributed for web browsers and/or webviews supporting BigInt as an ES6 module or an IIFE file; and for Node.js (>=10.4.0), as a CJS module.

bigint-mod-arith can be imported to your project with npm:

npm install bigint-mod-arith

NPM installation defaults to the ES6 module for browsers and the CJS one for Node.js.

For web browsers, you can also directly download the minimised version of the IIFE file or the ES6 module from GitHub.

Usage example

With node js:

const bigintModArith = require('bigint-mod-arith');

/* Stage 3 BigInts with value 666 can be declared as BigInt('666')
or the shorter new no-so-linter-friendly syntax 666n.
Notice that you can also pass a number, e.g. BigInt(666), but it is not
recommended since values over 2**53 - 1 won't be safe but no warning will
be raised.
*/
let a = BigInt('5');
let b = BigInt('2');
let n = BigInt('19');

console.log(bigintCryptoUtils.modPow(a, b, n)); // prints 6

console.log(bigintCryptoUtils.modInv(BigInt('2'), BigInt('5'))); // prints 3

console.log(bigintCryptoUtils.modInv(BigInt('3'), BigInt('5'))); // prints 2

From a browser, you can just load the module in a html page as:

<script type="module">
    import * as bigintModArith from 'bigint-mod-arith-latest.browser.mod.min.js';

    let a = BigInt('5');
    let b = BigInt('2');
    let n = BigInt('19');

    console.log(bigintModArith.modPow(a, b, n)); // prints 6

    console.log(bigintModArith.modInv(BigInt('2'), BigInt('5'))); // prints 3

    console.log(bigintModArith.modInv(BigInt('3'), BigInt('5'))); // prints 2
</script>

bigint-mod-arith JS Doc

Functions

abs(a)bigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

eGcd(a, b)egcdReturn

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

gcd(a, b)bigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

lcm(a, b)bigint

The least common multiple computed as abs(a*b)/gcd(a,b)

modInv(a, n)bigint

Modular inverse.

modPow(a, b, n)bigint

Modular exponentiation a**b mod n

toZn(a, n)bigint

Finds the smallest positive element that is congruent to a in modulo n

Typedefs

egcdReturn : Object

A triple (g, x, y), such that ax + by = g = gcd(a, b).

abs(a) ⇒ bigint

Absolute value. abs(a)==a if a>=0. abs(a)==-a if a<0

Kind: global function
Returns: bigint - the absolute value of a

ParamType
anumber | bigint

eGcd(a, b) ⇒ egcdReturn

An iterative implementation of the extended euclidean algorithm or extended greatest common divisor algorithm. Take positive integers a, b as input, and return a triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global function

ParamType
anumber | bigint
bnumber | bigint

gcd(a, b) ⇒ bigint

Greatest-common divisor of two integers based on the iterative binary algorithm.

Kind: global function
Returns: bigint - The greatest common divisor of a and b

ParamType
anumber | bigint
bnumber | bigint

lcm(a, b) ⇒ bigint

The least common multiple computed as abs(a*b)/gcd(a,b)

Kind: global function
Returns: bigint - The least common multiple of a and b

ParamType
anumber | bigint
bnumber | bigint

modInv(a, n) ⇒ bigint

Modular inverse.

Kind: global function
Returns: bigint - the inverse modulo n

ParamTypeDescription
anumber | bigintThe number to find an inverse for
nnumber | bigintThe modulo

modPow(a, b, n) ⇒ bigint

Modular exponentiation a**b mod n

Kind: global function
Returns: bigint - a**b mod n

ParamTypeDescription
anumber | bigintbase
bnumber | bigintexponent
nnumber | bigintmodulo

toZn(a, n) ⇒ bigint

Finds the smallest positive element that is congruent to a in modulo n

Kind: global function
Returns: bigint - The smallest positive representation of a in modulo n

ParamTypeDescription
anumber | bigintAn integer
nnumber | bigintThe modulo

egcdReturn : Object

A triple (g, x, y), such that ax + by = g = gcd(a, b).

Kind: global typedef
Properties

NameType
gbigint
xbigint
ybigint

Keywords

FAQs

Package last updated on 25 Apr 2019

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc