Pure JavaScript implementation of the Schnorr BIP
This is a pure JavaScript implementation of the standard 64-byte Schnorr signature
scheme over the elliptic curve secp256k1.
The code is based upon the
initial proposal of Pieter Wuille
when it didn't have a BIP number assigned yet.
I am by no means an expert in high performance JavaScript or the underlying cryptography.
So this library is probably really slow.
The current version passes all test vectors provided
here.
But the author does not give any guarantees that the algorithm is implemented
correctly for every edge case!
Please use for educational purposes only.
How to install
NPM:
npm install --save bip-schnorr
yarn:
yarn add bip-schnorr
How to use
NOTE: All parameters are either of type BigInteger
or Buffer
(or an array of those).
const bipSchnorr = require('bip-schnorr');
const convert = bipSchnorr.convert;
const privateKey = BigInteger.fromHex('B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF');
const message = Buffer.from('243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89', 'hex');
const createdSignature = bipSchnorr.sign(privateKey, message);
console.log('The signature is: ' + createdSignature.toString('hex'));
const publicKey = Buffer.from('02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659', 'hex');
const signatureToVerify = Buffer.from('2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD', 'hex');
try {
bipSchnorr.verify(publicKey, message, signatureToVerify);
console.log('The signature is valid.');
} catch (e) {
console.error('The signature verification failed: ' + e);
}
const publicKeys = [
Buffer.from('02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659', 'hex'),
Buffer.from('03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B', 'hex'),
Buffer.from('026D7F1D87AB3BBC8BC01F95D9AECE1E659D6E33C880F8EFA65FACF83E698BBBF7', 'hex'),
];
const messages = [
Buffer.from('243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89', 'hex'),
Buffer.from('5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C', 'hex'),
Buffer.from('B2F0CD8ECB23C1710903F872C31B0FD37E15224AF457722A87C5E0C7F50FFFB3', 'hex'),
];
const signatures = [
Buffer.from('2A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D1E51A22CCEC35599B8F266912281F8365FFC2D035A230434A1A64DC59F7013FD', 'hex'),
Buffer.from('00DA9B08172A9B6F0466A2DEFD817F2D7AB437E0D253CB5395A963866B3574BE00880371D01766935B92D2AB4CD5C8A2A5837EC57FED7660773A05F0DE142380', 'hex'),
Buffer.from('68CA1CC46F291A385E7C255562068357F964532300BEADFFB72DD93668C0C1CAC8D26132EB3200B86D66DE9C661A464C6B2293BB9A9F5B966E53CA736C7E504F', 'hex'),
];
try {
bipSchnorr.batchVerify(publicKeys, messages, signatures);
console.log('The signatures are valid.');
} catch (e) {
console.error('The signature verification failed: ' + e);
}
const privateKey1 = BigInteger.fromHex('B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF');
const privateKey2 = BigInteger.fromHex('C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C7');
const message = Buffer.from('243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89', 'hex');
const aggregatedSignature = bipSchnorr.naiveKeyAggregation([privateKey1, privateKey2], message);
const publicKey1 = Buffer.from('02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659', 'hex');
const publicKey2 = Buffer.from('03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B', 'hex');
const sumOfPublicKeys = convert.pubKeyToPoint(publicKey1).add(convert.pubKeyToPoint(publicKey2));
try {
bipSchnorr.verify(convert.pointToBuffer(sumOfPublicKeys), message, aggregatedSignature);
console.log('The signature is valid.');
} catch (e) {
console.error('The signature verification failed: ' + e);
}
const privateKey1 = BigInteger.fromHex('B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF');
const privateKey2 = BigInteger.fromHex('C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C7');
const message = Buffer.from('243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89', 'hex');
const aggregatedSignature = bipSchnorr.muSigNonInteractive([privateKey1, privateKey2], message);
const publicKey1 = Buffer.from('02DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659', 'hex');
const publicKey2 = Buffer.from('03FAC2114C2FBB091527EB7C64ECB11F8021CB45E8E7809D3C0938E4B8C0E5F84B', 'hex');
const L = convert.hash(Buffer.concat([publicKey1, publicKey2]));
const a1 = convert.bufferToInt(convert.hash(Buffer.concat([L, publicKey1])));
const a2 = convert.bufferToInt(convert.hash(Buffer.concat([L, publicKey2])));
const X = convert.pubKeyToPoint(publicKey1).multiply(a1).add(convert.pubKeyToPoint(publicKey2).multiply(a2));
try {
bipSchnorr.verify(convert.pointToBuffer(X), message, aggregatedSignature);
console.log('The signature is valid.');
} catch (e) {
console.error('The signature verification failed: ' + e);
}
API
bipSchnorr.sign(privateKey : BigInteger, message : Buffer) : Buffer
Sign a 32-byte message with the private key, returning a 64-byte signature.
bipSchnorr.verify(pubKey : Buffer, message : Buffer, signature : Buffer) : void
Verify a 64-byte signature of a 32-byte message against the public key. Throws an Error
if verification fails.
bipSchnorr.batchVerify(pubKeys : Buffer[], messages : Buffer[], signatures : Buffer[]) : void
Verify a list of 64-byte signatures as a batch operation. Throws an Error
if verification fails.
bipSchnorr.naiveKeyAggregation(privateKeys : BigInteger[], message : Buffer) : Buffer
Aggregates multiple signatures of different private keys over the same message into a single 64-byte signature.
This is just a demo of how the naive Schnorr multi-signature (or key aggregation scheme) can work.
This scheme is not secure, it is prone to so-called rogue-key attacks.
See Key Aggregation for Schnorr Signatures
by Blockstream.
Use the muSig scheme that prevents that attack.
bipSchnorr.muSigNonInteractive(privateKeys : BigInteger[], message : Buffer) : Buffer
Aggregates multiple signatures of different private keys over the same message into a single 64-byte signature
using a scheme that is safe from rogue-key attacks.
This non-interactive scheme requires the knowledge of all private keys that are participating in the
multi-signature creation. Use the muSigInteractive scheme that requires two steps to create
a signature with parties not sharing their private key.
Implementations in different languages
Performance
The code is not yet optimized for performance.
The following results were achieved on an Intel Core i7-6500U running on linux/amd64 with node v10.15.0:
$ node test/schnorr.benchmark.js
Sign (batch size: 1) x 29.70 ops/sec ±3.19% (53 runs sampled) 35769 us/op 28 sig/s
Sign (batch size: 2) x 15.20 ops/sec ±0.58% (42 runs sampled) 67754 us/op 30 sig/s
Sign (batch size: 4) x 7.63 ops/sec ±1.53% (23 runs sampled) 132366 us/op 30 sig/s
Sign (batch size: 8) x 3.87 ops/sec ±0.59% (14 runs sampled) 259093 us/op 31 sig/s
Sign (batch size: 16) x 1.96 ops/sec ±0.54% (9 runs sampled) 514358 us/op 31 sig/s
Sign (batch size: 32) x 0.95 ops/sec ±1.99% (7 runs sampled) 1051411 us/op 30 sig/s
Sign (batch size: 64) x 0.45 ops/sec ±5.08% (6 runs sampled) 2385445 us/op 27 sig/s
Verify (batch size: 1) x 30.09 ops/sec ±0.38% (53 runs sampled) 34477 us/op 29 sig/s
Verify (batch size: 2) x 15.02 ops/sec ±1.22% (41 runs sampled) 68379 us/op 29 sig/s
Verify (batch size: 4) x 7.37 ops/sec ±3.05% (23 runs sampled) 136874 us/op 29 sig/s
Verify (batch size: 8) x 3.79 ops/sec ±0.57% (14 runs sampled) 267222 us/op 30 sig/s
Verify (batch size: 16) x 1.89 ops/sec ±1.06% (9 runs sampled) 529846 us/op 30 sig/s
Verify (batch size: 32) x 0.95 ops/sec ±0.92% (7 runs sampled) 1051658 us/op 30 sig/s
Verify (batch size: 64) x 0.47 ops/sec ±0.77% (6 runs sampled) 2135796 us/op 30 sig/s
Batch Verify (batch size: 1) x 30.01 ops/sec ±1.29% (53 runs sampled) 34421 us/op 29 sig/s
Batch Verify (batch size: 2) x 12.14 ops/sec ±0.43% (34 runs sampled) 84276 us/op 24 sig/s
Batch Verify (batch size: 4) x 5.54 ops/sec ±0.65% (18 runs sampled) 181663 us/op 22 sig/s
Batch Verify (batch size: 8) x 2.66 ops/sec ±0.72% (11 runs sampled) 379037 us/op 21 sig/s
Batch Verify (batch size: 16) x 1.28 ops/sec ±3.25% (8 runs sampled) 780231 us/op 21 sig/s
Batch Verify (batch size: 32) x 0.64 ops/sec ±0.63% (6 runs sampled) 1557873 us/op 21 sig/s
Batch Verify (batch size: 64) x 0.32 ops/sec ±0.58% (5 runs sampled) 3145214 us/op 20 sig/s
Aggregate Signatures (batch size: 1) x 29.63 ops/sec ±1.14% (52 runs sampled) 34873 us/op 29 sig/s
Aggregate Signatures (batch size: 2) x 15.49 ops/sec ±0.83% (42 runs sampled) 66014 us/op 30 sig/s
Aggregate Signatures (batch size: 4) x 7.69 ops/sec ±0.61% (23 runs sampled) 132555 us/op 30 sig/s
Aggregate Signatures (batch size: 8) x 3.83 ops/sec ±1.08% (14 runs sampled) 262249 us/op 31 sig/s
Aggregate Signatures (batch size: 16) x 1.94 ops/sec ±0.68% (9 runs sampled) 518440 us/op 31 sig/s
Aggregate Signatures (batch size: 32) x 0.96 ops/sec ±0.30% (7 runs sampled) 1038215 us/op 31 sig/s
Aggregate Signatures (batch size: 64) x 0.48 ops/sec ±0.61% (6 runs sampled) 2092208 us/op 31 sig/s
Done in 333.35s.