Security News
vlt Debuts New JavaScript Package Manager and Serverless Registry at NodeConf EU
vlt introduced its new package manager and a serverless registry this week, innovating in a space where npm has stagnated.
cjs-module-lexer
Advanced tools
The cjs-module-lexer package is designed to analyze CommonJS modules to extract export and import information. It is particularly useful for tools that need to understand the structure of a module without executing it, such as bundlers or module loaders.
Parse require statements
This feature allows you to parse the source code of a CommonJS module to identify all the require statements. It helps in understanding dependencies of the module.
const { parse } = require('cjs-module-lexer');
const source = "const x = require('some-module');";
const result = parse(source);
console.log(result);
Extract exports
This functionality enables the extraction of all export statements from a CommonJS module. It is useful for tools that need to generate a list of all exports from a module.
const { parse } = require('cjs-module-lexer');
const source = "exports.a = 1; module.exports.b = 2;";
const result = parse(source);
console.log(result);
Acorn is a JavaScript parser that can parse ECMAScript code. It is similar to cjs-module-lexer in that it helps in understanding the structure of JavaScript code. However, Acorn supports ECMAScript syntax broadly, whereas cjs-module-lexer specifically targets CommonJS module syntax.
es-module-lexer is designed to parse ESM (ECMAScript Modules). It is similar to cjs-module-lexer but focuses on the newer ES module system rather than CommonJS. This makes es-module-lexer more suitable for projects that use native JavaScript modules.
A very fast JS CommonJS module syntax lexer used to detect the most likely list of named exports of a CommonJS module.
Outputs the list of named exports (exports.name = ...
) and possible module reexports (module.exports = require('...')
), including the common transpiler variations of these cases.
Forked from https://github.com/guybedford/es-module-lexer.
Comprehensively handles the JS language grammar while remaining small and fast. - ~90ms per MB of JS cold and ~15ms per MB of JS warm, see benchmarks for more info.
This project is used in Node.js core for detecting the named exports available when importing a CJS module into ESM, and is maintained for this purpose.
PRs will be accepted and upstreamed for parser bugs, performance improvements or new syntax support only.
Detection patterns for this project are frozen. This is because adding any new export detection patterns would result in fragmented backwards-compatibility. Specifically, it would be very difficult to figure out why an ES module named export for CommonJS might work in newer Node.js versions but not older versions. This problem would only be discovered downstream of module authors, with the fix for module authors being to then have to understand which patterns in this project provide full backwards-compatibily. Rather, by fully freezing the detected patterns, if it works in any Node.js version it will work in any other. Build tools can also reliably treat the supported syntax for this project as a part of their output target for ensuring syntax support.
npm install cjs-module-lexer
For use in CommonJS:
const { parse } = require('cjs-module-lexer');
// `init` return a promise for parity with the ESM API, but you do not have to call it
const { exports, reexports } = parse(`
// named exports detection
module.exports.a = 'a';
(function () {
exports.b = 'b';
})();
Object.defineProperty(exports, 'c', { value: 'c' });
/* exports.d = 'not detected'; */
// reexports detection
if (maybe) module.exports = require('./dep1.js');
if (another) module.exports = require('./dep2.js');
// literal exports assignments
module.exports = { a, b: c, d, 'e': f }
// __esModule detection
Object.defineProperty(module.exports, '__esModule', { value: true })
`);
// exports === ['a', 'b', 'c', '__esModule']
// reexports === ['./dep1.js', './dep2.js']
When using the ESM version, Wasm is supported instead:
import { parse, init } from 'cjs-module-lexer';
// init() needs to be called and waited upon, or use initSync() to compile
// Wasm blockingly and synchronously.
await init();
const { exports, reexports } = parse(source);
The Wasm build is around 1.5x faster and without a cold start.
CommonJS exports matches are run against the source token stream.
The token grammar is:
IDENTIFIER: As defined by ECMA-262, without support for identifier `\` escapes, filtered to remove strict reserved words:
"implements", "interface", "let", "package", "private", "protected", "public", "static", "yield", "enum"
STRING_LITERAL: A `"` or `'` bounded ECMA-262 string literal.
MODULE_EXPORTS: `module` `.` `exports`
EXPORTS_IDENTIFIER: MODULE_EXPORTS_IDENTIFIER | `exports`
EXPORTS_DOT_ASSIGN: EXPORTS_IDENTIFIER `.` IDENTIFIER `=`
EXPORTS_LITERAL_COMPUTED_ASSIGN: EXPORTS_IDENTIFIER `[` STRING_LITERAL `]` `=`
EXPORTS_LITERAL_PROP: (IDENTIFIER (`:` IDENTIFIER)?) | (STRING_LITERAL `:` IDENTIFIER)
EXPORTS_SPREAD: `...` (IDENTIFIER | REQUIRE)
EXPORTS_MEMBER: EXPORTS_DOT_ASSIGN | EXPORTS_LITERAL_COMPUTED_ASSIGN
EXPORTS_DEFINE: `Object` `.` `defineProperty `(` EXPORTS_IDENFITIER `,` STRING_LITERAL
EXPORTS_DEFINE_VALUE: EXPORTS_DEFINE `, {`
(`enumerable: true,`)?
(
`value:` |
`get` (`: function` IDENTIFIER? )? `() {` return IDENTIFIER (`.` IDENTIFIER | `[` STRING_LITERAL `]`)? `;`? `}` `,`?
)
`})`
EXPORTS_LITERAL: MODULE_EXPORTS `=` `{` (EXPORTS_LITERAL_PROP | EXPORTS_SPREAD) `,`)+ `}`
REQUIRE: `require` `(` STRING_LITERAL `)`
EXPORTS_ASSIGN: (`var` | `const` | `let`) IDENTIFIER `=` (`_interopRequireWildcard (`)? REQUIRE
MODULE_EXPORTS_ASSIGN: MODULE_EXPORTS `=` REQUIRE
EXPORT_STAR: (`__export` | `__exportStar`) `(` REQUIRE
EXPORT_STAR_LIB: `Object.keys(` IDENTIFIER$1 `).forEach(function (` IDENTIFIER$2 `) {`
(
(
`if (` IDENTIFIER$2 `===` ( `'default'` | `"default"` ) `||` IDENTIFIER$2 `===` ( '__esModule' | `"__esModule"` ) `) return` `;`?
(
(`if (Object` `.prototype`? `.hasOwnProperty.call(` IDENTIFIER `, ` IDENTIFIER$2 `)) return` `;`?)?
(`if (` IDENTIFIER$2 `in` EXPORTS_IDENTIFIER `&&` EXPORTS_IDENTIFIER `[` IDENTIFIER$2 `] ===` IDENTIFIER$1 `[` IDENTIFIER$2 `]) return` `;`)?
)?
) |
`if (` IDENTIFIER$2 `!==` ( `'default'` | `"default"` ) (`&& !` (`Object` `.prototype`? `.hasOwnProperty.call(` IDENTIFIER `, ` IDENTIFIER$2 `)` | IDENTIFIER `.hasOwnProperty(` IDENTIFIER$2 `)`))? `)`
)
(
EXPORTS_IDENTIFIER `[` IDENTIFIER$2 `] =` IDENTIFIER$1 `[` IDENTIFIER$2 `]` `;`? |
`Object.defineProperty(` EXPORTS_IDENTIFIER `, ` IDENTIFIER$2 `, { enumerable: true, get` (`: function` IDENTIFIER? )? `() { return ` IDENTIFIER$1 `[` IDENTIFIER$2 `]` `;`? `}` `,`? `})` `;`?
)
`})`
Spacing between tokens is taken to be any ECMA-262 whitespace, ECMA-262 block comment or ECMA-262 line comment.
IDENTIFIER
and STRING_LITERAL
slots for EXPORTS_MEMBER
and EXPORTS_LITERAL
matches.STRING_LITERAL
slot for all EXPORTS_DEFINE_VALUE
matches where that same string is not an EXPORTS_DEFINE
match that is not also an EXPORTS_DEFINE_VALUE
match.REQUIRE
matches of the last matched of either MODULE_EXPORTS_ASSIGN
or EXPORTS_LITERAL
.EXPORT_STAR
REQUIRE
matches and EXPORTS_ASSIGN
matches whose IDENTIFIER
also matches the first IDENTIFIER
in EXPORT_STAR_LIB
.The basic matching rules for named exports are exports.name
, exports['name']
or Object.defineProperty(exports, 'name', ...)
. This matching is done without scope analysis and regardless of the expression position:
// DETECTS EXPORTS: a, b
(function (exports) {
exports.a = 'a';
exports['b'] = 'b';
})(exports);
Because there is no scope analysis, the above detection may overclassify:
// DETECTS EXPORTS: a, b, c
(function (exports, Object) {
exports.a = 'a';
exports['b'] = 'b';
if (false)
exports.c = 'c';
})(NOT_EXPORTS, NOT_OBJECT);
It will in turn underclassify in cases where the identifiers are renamed:
// DETECTS: NO EXPORTS
(function (e) {
e.a = 'a';
e['b'] = 'b';
})(exports);
Object.defineProperty
is detected for specifically value and getter forms returning an identifier or member expression:
// DETECTS: a, b, c, d, __esModule
Object.defineProperty(exports, 'a', {
enumerable: true,
get: function () {
return q.p;
}
});
Object.defineProperty(exports, 'b', {
enumerable: true,
get: function () {
return q['p'];
}
});
Object.defineProperty(exports, 'c', {
enumerable: true,
get () {
return b;
}
});
Object.defineProperty(exports, 'd', { value: 'd' });
Object.defineProperty(exports, '__esModule', { value: true });
Value properties are also detected specifically:
Object.defineProperty(exports, 'a', {
value: 'no problem'
});
To avoid matching getters that have side effects, any getter for an export name that does not support the forms above will opt-out of the getter matching:
// DETECTS: NO EXPORTS
Object.defineProperty(exports, 'a', {
get () {
return 'nope';
}
});
if (false) {
Object.defineProperty(module.exports, 'a', {
get () {
return dynamic();
}
})
}
Alternative object definition structures or getter function bodies are not detected:
// DETECTS: NO EXPORTS
Object.defineProperty(exports, 'a', {
enumerable: false,
get () {
return p;
}
});
Object.defineProperty(exports, 'b', {
configurable: true,
get () {
return p;
}
});
Object.defineProperty(exports, 'c', {
get: () => p
});
Object.defineProperty(exports, 'd', {
enumerable: true,
get: function () {
return dynamic();
}
});
Object.defineProperty(exports, 'e', {
enumerable: true,
get () {
return 'str';
}
});
Object.defineProperties
is also not supported.
A best-effort is made to detect module.exports
object assignments, but because this is not a full parser, arbitrary expressions are not handled in the
object parsing process.
Simple object definitions are supported:
// DETECTS EXPORTS: a, b, c
module.exports = {
a,
'b': b,
c: c,
...d
};
Object properties that are not identifiers or string expressions will bail out of the object detection, while spreads are ignored:
// DETECTS EXPORTS: a, b
module.exports = {
a,
...d,
b: require('c'),
c: "not detected since require('c') above bails the object detection"
}
Object.defineProperties
is not currently supported either.
Any module.exports = require('mod')
assignment is detected as a reexport, but only the last one is returned:
// DETECTS REEXPORTS: c
module.exports = require('a');
(module => module.exports = require('b'))(NOT_MODULE);
if (false) module.exports = require('c');
This is to avoid over-classification in Webpack bundles with externals which include module.exports = require('external')
in their source for every external dependency.
In exports object assignment, any spread of require()
are detected as multiple separate reexports:
// DETECTS REEXPORTS: a, b
module.exports = require('ignored');
module.exports = {
...require('a'),
...require('b')
};
For named exports, transpiler output works well with the rules described above.
But for star re-exports, special care is taken to support common patterns of transpiler outputs from Babel and TypeScript as well as bundlers like RollupJS. These reexport and star reexport patterns are restricted to only be detected at the top-level as provided by the direct output of these tools.
For example, export * from 'external'
is output by Babel as:
"use strict";
exports.__esModule = true;
var _external = require("external");
Object.keys(_external).forEach(function (key) {
if (key === "default" || key === "__esModule") return;
exports[key] = _external[key];
});
Where the var _external = require("external")
is specifically detected as well as the Object.keys(_external)
statement, down to the exact
for of that entire expression including minor variations of the output. The _external
and key
identifiers are carefully matched in this
detection.
Similarly for TypeScript, export * from 'external'
is output as:
"use strict";
function __export(m) {
for (var p in m) if (!exports.hasOwnProperty(p)) exports[p] = m[p];
}
Object.defineProperty(exports, "__esModule", { value: true });
__export(require("external"));
Where the __export(require("external"))
statement is explicitly detected as a reexport, including variations tslib.__export
and __exportStar
.
Node.js 10+, and all browsers with Web Assembly support.
Benchmarks can be run with npm run bench
.
Current results:
JS Build:
Module load time
> 4ms
Cold Run, All Samples
test/samples/*.js (3635 KiB)
> 299ms
Warm Runs (average of 25 runs)
test/samples/angular.js (1410 KiB)
> 13.96ms
test/samples/angular.min.js (303 KiB)
> 4.72ms
test/samples/d3.js (553 KiB)
> 6.76ms
test/samples/d3.min.js (250 KiB)
> 4ms
test/samples/magic-string.js (34 KiB)
> 0.64ms
test/samples/magic-string.min.js (20 KiB)
> 0ms
test/samples/rollup.js (698 KiB)
> 8.48ms
test/samples/rollup.min.js (367 KiB)
> 5.36ms
Warm Runs, All Samples (average of 25 runs)
test/samples/*.js (3635 KiB)
> 40.28ms
Wasm Build:
Module load time
> 10ms
Cold Run, All Samples
test/samples/*.js (3635 KiB)
> 43ms
Warm Runs (average of 25 runs)
test/samples/angular.js (1410 KiB)
> 9.32ms
test/samples/angular.min.js (303 KiB)
> 3.16ms
test/samples/d3.js (553 KiB)
> 5ms
test/samples/d3.min.js (250 KiB)
> 2.32ms
test/samples/magic-string.js (34 KiB)
> 0.16ms
test/samples/magic-string.min.js (20 KiB)
> 0ms
test/samples/rollup.js (698 KiB)
> 6.28ms
test/samples/rollup.min.js (367 KiB)
> 3.6ms
Warm Runs, All Samples (average of 25 runs)
test/samples/*.js (3635 KiB)
> 27.76ms
To build download the WASI SDK from https://github.com/WebAssembly/wasi-sdk/releases.
The Makefile assumes the existence of "wasi-sdk-11.0" and "wabt" (optional) as sibling folders to this project.
The build through the Makefile is then run via make lib/lexer.wasm
, which can also be triggered via npm run build-wasm
to create dist/lexer.js
.
On Windows it may be preferable to use the Linux subsystem.
After the Web Assembly build, the CJS build can be triggered via npm run build
.
Optimization passes are run with Binaryen prior to publish to reduce the Web Assembly footprint.
MIT
FAQs
Lexes CommonJS modules, returning their named exports metadata
The npm package cjs-module-lexer receives a total of 24,582,938 weekly downloads. As such, cjs-module-lexer popularity was classified as popular.
We found that cjs-module-lexer demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
vlt introduced its new package manager and a serverless registry this week, innovating in a space where npm has stagnated.
Security News
Research
The Socket Research Team uncovered a malicious Python package typosquatting the popular 'fabric' SSH library, silently exfiltrating AWS credentials from unsuspecting developers.
Security News
At its inaugural meeting, the JSR Working Group outlined plans for an open governance model and a roadmap to enhance JavaScript package management.