New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

cognitive-ts

Package Overview
Dependencies
Maintainers
1
Versions
10
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

cognitive-ts - npm Package Compare versions

Comparing version 2.0.1 to 2.0.2

__test__/trie.test.ts

10

__test__/base.test.ts
import * as _ from "lodash"
import { compose, sFn, isSquare, swap, sFill } from "../lib/base"
import { compose, sFn, isSquare, swap, sFill, transpose } from "../lib/base"
import { add } from "../lib/data-frame"

@@ -12,3 +12,3 @@

expect(sFn([[1, 2, 3]], (x: number[]) => _.map(x, (n) => n * 2))).toEqual([
expect(sFn([[1, 2, 3]])((x: number[]) => _.map(x, (n) => n * 2))).toEqual([
[2, 4, 6]

@@ -19,2 +19,8 @@ ])

expect(transpose([[1, 2, 3], [1, 2, 3]])).toEqual([
[1, 1],
[2, 2],
[3, 3]
])
expect(

@@ -21,0 +27,0 @@ isSquare([

10

index.ts

@@ -1,6 +0,6 @@

import * as dfMath from "./lib/df/math"
import * as sMath from "./lib/s/math"
import * as base from "./lib/base/base"
import * as rotate from "./lib/rotate"
import * as shape from "./lib/shape"
import * as dfMath from './lib/df/math'
import * as sMath from './lib/s/math'
import * as base from './lib/base/base'
import * as rotate from './lib/rotate'
import * as shape from './lib/shape'

@@ -7,0 +7,0 @@ export default {

@@ -1,5 +0,5 @@

import * as _ from "lodash"
import { shape } from "../base"
import { dot, sumSquares } from "../data-frame"
import { sZeros } from "../series"
import * as _ from 'lodash'
import { shape } from '../base'
import { dot, sumSquares } from '../data-frame'
import { sZeros } from '../series'

@@ -31,3 +31,3 @@ export const multiVariateLinearRegression = (x: { features: Matrix, labels: Series}, iterations: number) => {

const [m, n] = shape(features)
let weights = sZeros(n)
const weights = sZeros(n)
let bias = 0

@@ -34,0 +34,0 @@

@@ -0,8 +1,10 @@

/* eslint-disable @typescript-eslint/ban-types */
import * as _ from 'lodash'
export const compose = (...fns: Function[]) =>
(args: Matrix) =>
_.reduce(fns, (arg, fn: Function) => fn(arg), args)
export const compose =
(...fns: Function[]) =>
(args: Matrix) =>
_.reduce(fns, (arg, fn: Function) => fn(arg), args)
export const sFn = (x: Matrix, fn: (s: Series) => SeriesResult) =>
export const sFn = (x: Matrix) => (fn: (s: Series) => SeriesResult) =>
_.map(

@@ -15,3 +17,3 @@ x,

export const swap = (arr: Array<any>, i: any, j: any) => {
export const swap = (arr: number[], i: number, j: number) => {
const temp = arr[i]

@@ -23,11 +25,14 @@ arr[i] = arr[j]

export const transpose = _.memoize((x : Matrix) =>
_.map(_.first(x), (_v: Series, i: number) => _.reverse(_.map(x, (r) => r[i])))
)
export const transpose = (x: Matrix) =>
_.map(_.first(x), (_v: Series, i: number): number[] =>
_.reverse(_.map(x, (r) => r[i]))
)
export const inverseTranspose = _.memoize((x : Matrix) =>
_.map(_.first(x), (_v: Series, i: number) => _.map(x, (r: number[]) => r[_.size(r) - 1 - i]))
export const inverseTranspose = _.memoize((x: Matrix) =>
_.map(_.first(x), (_v: Series, i: number) =>
_.map(x, (r: number[]) => r[_.size(r) - 1 - i])
)
)
export const shape = _.memoize((x : Matrix) => [_.size(x), _.size(_.first(x))])
export const shape = _.memoize((x: Matrix) => [_.size(x), _.size(_.first(x))])

@@ -34,0 +39,0 @@ export const isSquare = _.memoize(

@@ -1,50 +0,68 @@

import * as _ from "lodash"
import * as b from "../base"
import * as s from "../series"
import * as _ from 'lodash'
import { transpose, inverseTranspose, compose, sFn } from '../base'
import {
sAbs,
sAdd,
sCumSum,
sDivide,
sMean,
sMultiply,
sPow,
sRandom,
sSqrt,
sStd,
sSubtract,
sZeros
} from '../series'
export const mean = (x : Matrix) =>
b.compose(b.transpose, (x : Matrix) => b.sFn(x, s.sMean), b.inverseTranspose)(x)
export const mean = (x: Matrix) =>
compose(transpose, (x: Matrix) => sFn(x)(sMean), inverseTranspose)(x)
export const sqrt = (x : Matrix) =>
b.compose(b.transpose, (x : Matrix) => b.sFn(x, s.sSqrt), b.inverseTranspose)(x)
export const sqrt = (x: Matrix) =>
compose(transpose, (x: Matrix) => sFn(x)(sSqrt), inverseTranspose)(x)
export const stddev = (x : Matrix) => b.compose(b.transpose, (x : Matrix) => b.sFn(x, s.sStd))(x)
export const stddev = (x: Matrix) =>
compose(transpose, (x: Matrix) => sFn(x)(sStd))(x)
export const cumSum = (x : Matrix) =>
b.compose(b.inverseTranspose, (x : Matrix) => b.sFn(x, s.sCumSum), b.transpose)(x)
export const cumSum = (x: Matrix) =>
compose(inverseTranspose, (x: Matrix) => sFn(x)(sCumSum), transpose)(x)
export const add = (x : Matrix) => b.compose(b.transpose, (x : Matrix) => b.sFn(x, s.sAdd))(x)
export const add = (x: Matrix) =>
compose(transpose, (x: Matrix) => sFn(x)(sAdd))(x)
export const subtract = (x : Matrix) =>
b.compose(b.transpose, (x : Matrix) => b.sFn(x, s.sSubtract))(x)
export const subtract = (x: Matrix) =>
compose(transpose, (x: Matrix) => sFn(x)(sSubtract))(x)
export const divide = (x : Matrix) =>
b.compose(b.transpose, (x : Matrix) => b.sFn(x, s.sDivide))(x)
export const divide = (x: Matrix) =>
compose(transpose, (x: Matrix) => sFn(x)(sDivide))(x)
export const multiply = (x : Matrix) =>
b.compose(b.transpose, (x : Matrix) => b.sFn(x, s.sMultiply))(x)
export const multiply = (x: Matrix) =>
compose(transpose, (x: Matrix) => sFn(x)(sMultiply))(x)
export const matMul = (x: Matrix, y: Matrix) =>
_.map(b.transpose(x), (r: number[], ri: number) =>
_.map(r, (n: number, i: number) => n * _.get(b.transpose(y), [ri, i]))
_.map(transpose(x), (r: number[], ri: number) =>
_.map(r, (n: number, i: number) => n * _.get(transpose(y), [ri, i]))
)
export const abs = (x : Matrix) => b.sFn(x, s.sAbs)
export const abs = (x: Matrix) => sFn(x)(sAbs)
export const fill = (i: number, t: number) => _.fill(Array(t), i)
export const zeros = (r: number, c: number) => _.map(_.times(r, () => s.sZeros(c)))
export const zeros = (r: number, c: number) =>
_.map(_.times(r, () => sZeros(c)))
export const random = (r: number, c: number, min?: number, max?: number) =>
_.map(_.times(r, () => s.sRandom(c, min, max)))
_.map(_.times(r, () => sRandom(c, min, max)))
export const pow = (x: Matrix, p: number) => b.sFn(x, (x : number[]) => s.sPow(x, p))
export const pow = (x: Matrix, p: number) => sFn(x)((x: number[]) => sPow(x, p))
export const dot = (a: number[], b: number[]): number =>
_.reduce(a, (acc: number, n: number, i: number) => _.add(acc, _.multiply(n, _.get(b, i))), 0)
_.reduce(
a,
(acc: number, n: number, i: number) =>
_.add(acc, _.multiply(n, _.get(b, i))),
0
)
export const sumSquares = (x: number[], y: number[]) =>
_.divide(
_.sum(_.map(x, (n, i) => (n - _.get(y, i)) ** 2)),
_.size(x)
)
_.divide(_.sum(_.map(x, (n, i) => (n - _.get(y, i)) ** 2)), _.size(x))
{
"name": "cognitive-ts",
"version": "2.0.1",
"version": "2.0.2",
"description": "",

@@ -13,5 +13,4 @@ "main": "index.js",

"test:debug": "jest --runInBand",
"lint": "standard ./lib",
"lint:fix": "standard --fix ./lib",
"lint:fix:test": "standard --fix ./__test__"
"lint": "eslint . --ext .ts",
"lint:fix": "eslint --fix . --ext .ts"
},

@@ -26,3 +25,6 @@ "author": "Richard Macarthy (rjmacarthy)",

"@types/lodash": "^4.14.187",
"@typescript-eslint/eslint-plugin": "^5.42.0",
"@typescript-eslint/parser": "^5.42.0",
"babel-jest": "^29.1.2",
"eslint": "^8.26.0",
"jest": "^29.2.2",

@@ -29,0 +31,0 @@ "standard": "^17.0.0",

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc