New Case Study:See how Anthropic automated 95% of dependency reviews with Socket.Learn More
Socket
Sign inDemoInstall
Socket

create-llama

Package Overview
Dependencies
Maintainers
0
Versions
128
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

create-llama - npm Package Compare versions

Comparing version 0.3.11 to 0.3.12

dist/templates/components/agents/python/blog/app/workflows/__init__.py

6

dist/templates/components/agents/python/blog/README-template.md

@@ -11,5 +11,5 @@ ## Overview

1. [Choreography](./app/examples/choreography.py) - the agents decide themselves to delegate a task to another agent
1. [Orchestrator](./app/examples/orchestrator.py) - a central orchestrator decides which agent should execute a task
1. [Explicit Workflow](./app/examples/workflow.py) - a pre-defined workflow specific for the task is used to execute the tasks
1. [Choreography](./app/agents/choreography.py) - the agents decide themselves to delegate a task to another agent
1. [Orchestrator](./app/agents/orchestrator.py) - a central orchestrator decides which agent should execute a task
1. [Explicit Workflow](./app/agents/workflow.py) - a pre-defined workflow specific for the task is used to execute the tasks

@@ -16,0 +16,0 @@ ## Getting Started

@@ -36,3 +36,3 @@ This is a [LlamaIndex](https://www.llamaindex.ai/) multi-agents project using [Workflows](https://docs.llamaindex.ai/en/stable/understanding/workflows/).

You can start editing the API by modifying `app/api/routers/chat.py` or `app/financial_report/workflow.py`. The API auto-updates as you save the files.
You can start editing the API by modifying `app/api/routers/chat.py` or `app/workflows/financial_report.py`. The API auto-updates as you save the files.

@@ -39,0 +39,0 @@ Open [http://localhost:8000/docs](http://localhost:8000/docs) with your browser to see the Swagger UI of the API.

@@ -42,3 +42,3 @@ This is a [LlamaIndex](https://www.llamaindex.ai/) multi-agents project using [Workflows](https://docs.llamaindex.ai/en/stable/understanding/workflows/).

You can start editing the API by modifying `app/api/routers/chat.py` or `app/agents/form_filling.py`. The API auto-updates as you save the files.
You can start editing the API by modifying `app/api/routers/chat.py` or `app/workflows/form_filling.py`. The API auto-updates as you save the files.

@@ -45,0 +45,0 @@ Open [http://localhost:8000/docs](http://localhost:8000/docs) with your browser to see the Swagger UI of the API.

import { BaseToolWithCall } from "llamaindex";
import { ToolsFactory } from "llamaindex/tools/ToolsFactory";
import fs from "node:fs/promises";
import path from "node:path";
import { CodeGeneratorTool, CodeGeneratorToolParams } from "./code-generator";

@@ -9,2 +11,8 @@ import {

import { DuckDuckGoSearchTool, DuckDuckGoToolParams } from "./duckduckgo";
import {
ExtractMissingCellsParams,
ExtractMissingCellsTool,
FillMissingCellsParams,
FillMissingCellsTool,
} from "./form-filling";
import { ImgGeneratorTool, ImgGeneratorToolParams } from "./img-gen";

@@ -58,2 +66,8 @@ import { InterpreterTool, InterpreterToolParams } from "./interpreter";

},
form_filling: async (config: unknown) => {
return [
new ExtractMissingCellsTool(config as ExtractMissingCellsParams),
new FillMissingCellsTool(config as FillMissingCellsParams),
];
},
};

@@ -75,1 +89,17 @@

}
export async function getConfiguredTools(
configPath?: string,
): Promise<BaseToolWithCall[]> {
const configFile = path.join(configPath ?? "config", "tools.json");
const toolConfig = JSON.parse(await fs.readFile(configFile, "utf8"));
const tools = await createTools(toolConfig);
return tools;
}
export async function getTool(
toolName: string,
): Promise<BaseToolWithCall | undefined> {
const tools = await getConfiguredTools();
return tools.find((tool) => tool.metadata.name === toolName);
}

@@ -16,3 +16,3 @@ import { Document } from "llamaindex";

const UPLOADED_FOLDER = "output/uploaded";
export const UPLOADED_FOLDER = "output/uploaded";

@@ -19,0 +19,0 @@ export async function storeAndParseFile(

import { Document, LLamaCloudFileService, VectorStoreIndex } from "llamaindex";
import { LlamaCloudIndex } from "llamaindex/cloud/LlamaCloudIndex";
import fs from "node:fs/promises";
import path from "node:path";
import { DocumentFile } from "../streaming/annotations";

@@ -21,4 +19,4 @@ import { parseFile, storeFile } from "./helper";

// If the file is csv and has codeExecutorTool, we don't need to index the file.
if (mimeType === "text/csv" && (await hasCodeExecutorTool())) {
// Do not index csv files
if (mimeType === "text/csv") {
return fileMetadata;

@@ -65,12 +63,1 @@ }

}
const hasCodeExecutorTool = async () => {
const codeExecutorTools = ["interpreter", "artifact"];
const configFile = path.join("config", "tools.json");
const toolConfig = JSON.parse(await fs.readFile(configFile, "utf8"));
const localTools = toolConfig.local || {};
// Check if local tools contains codeExecutorTools
return codeExecutorTools.some((tool) => localTools[tool] !== undefined);
};
import { JSONValue, Message } from "ai";
import { MessageContent, MessageContentDetail } from "llamaindex";
import {
ChatMessage,
MessageContent,
MessageContentDetail,
MessageType,
} from "llamaindex";
import { UPLOADED_FOLDER } from "../documents/helper";

@@ -61,2 +67,41 @@ export type DocumentFileType = "csv" | "pdf" | "txt" | "docx";

export function convertToChatHistory(messages: Message[]): ChatMessage[] {
if (!messages || !Array.isArray(messages)) {
return [];
}
const agentHistory = retrieveAgentHistoryMessage(messages);
if (agentHistory) {
const previousMessages = messages.slice(0, -1);
return [...previousMessages, agentHistory].map((msg) => ({
role: msg.role as MessageType,
content: msg.content,
}));
}
return messages.map((msg) => ({
role: msg.role as MessageType,
content: msg.content,
}));
}
function retrieveAgentHistoryMessage(
messages: Message[],
maxAgentMessages = 10,
): ChatMessage | null {
const agentAnnotations = getAnnotations<{ agent: string; text: string }>(
messages,
{ role: "assistant", type: "agent" },
).slice(-maxAgentMessages);
if (agentAnnotations.length > 0) {
const messageContent =
"Here is the previous conversation of agents:\n" +
agentAnnotations.map((annotation) => annotation.data.text).join("\n");
return {
role: "assistant",
content: messageContent,
};
}
return null;
}
function getFileContent(file: DocumentFile): string {

@@ -88,2 +133,6 @@ let defaultContent = `=====File: ${file.name}=====\n`;

// Include local file path
const localFilePath = `${UPLOADED_FOLDER}/${file.name}`;
defaultContent += `Local file path (instruction: use for local tool that requires a local path): ${localFilePath}\n`;
return defaultContent;

@@ -132,9 +181,6 @@ }

function convertAnnotations(messages: Message[]): MessageContentDetail[] {
// annotations from the last user message that has annotations
const annotations: Annotation[] =
messages
.slice()
.reverse()
.find((message) => message.role === "user" && message.annotations)
?.annotations?.map(getValidAnnotation) || [];
// get all annotations from user messages
const annotations: Annotation[] = messages
.filter((message) => message.role === "user" && message.annotations)
.flatMap((message) => message.annotations?.map(getValidAnnotation) || []);
if (annotations.length === 0) return [];

@@ -141,0 +187,0 @@

@@ -1,34 +0,32 @@

import { StopEvent } from "@llamaindex/core/workflow";
import { Message, streamToResponse } from "ai";
import { Request, Response } from "express";
import { ChatResponseChunk } from "llamaindex";
import {
convertToChatHistory,
retrieveMessageContent,
} from "./llamaindex/streaming/annotations";
import { createWorkflow } from "./workflow/factory";
import { toDataStream, workflowEventsToStreamData } from "./workflow/stream";
import { createStreamFromWorkflowContext } from "./workflow/stream";
export const chat = async (req: Request, res: Response) => {
try {
const { messages, data }: { messages: Message[]; data?: any } = req.body;
const userMessage = messages.pop();
if (!messages || !userMessage || userMessage.role !== "user") {
const { messages }: { messages: Message[] } = req.body;
if (!messages || messages.length === 0) {
return res.status(400).json({
error:
"messages are required in the request body and the last message must be from the user",
error: "messages are required in the request body",
});
}
const chatHistory = convertToChatHistory(messages);
const userMessageContent = retrieveMessageContent(messages);
const agent = createWorkflow(messages, data);
const result = agent.run<AsyncGenerator<ChatResponseChunk>>(
userMessage.content,
) as unknown as Promise<StopEvent<AsyncGenerator<ChatResponseChunk>>>;
const workflow = await createWorkflow({ chatHistory });
// convert the workflow events to a vercel AI stream data object
const agentStreamData = await workflowEventsToStreamData(
agent.streamEvents(),
);
// convert the workflow result to a vercel AI content stream
const stream = toDataStream(result, {
onFinal: () => agentStreamData.close(),
const context = workflow.run({
message: userMessageContent,
streaming: true,
});
return streamToResponse(stream, res, {}, agentStreamData);
const { stream, dataStream } =
await createStreamFromWorkflowContext(context);
return streamToResponse(stream, res, {}, dataStream);
} catch (error) {

@@ -35,0 +33,0 @@ console.error("[LlamaIndex]", error);

import { initObservability } from "@/app/observability";
import { StopEvent } from "@llamaindex/core/workflow";
import { Message, StreamingTextResponse } from "ai";
import { ChatResponseChunk } from "llamaindex";
import { StreamingTextResponse, type Message } from "ai";
import { NextRequest, NextResponse } from "next/server";
import { initSettings } from "./engine/settings";
import {
convertToChatHistory,
isValidMessages,
retrieveMessageContent,
} from "./llamaindex/streaming/annotations";
import { createWorkflow } from "./workflow/factory";
import { toDataStream, workflowEventsToStreamData } from "./workflow/stream";
import { createStreamFromWorkflowContext } from "./workflow/stream";

@@ -19,5 +22,4 @@ initObservability();

const body = await request.json();
const { messages, data }: { messages: Message[]; data?: any } = body;
const userMessage = messages.pop();
if (!messages || !userMessage || userMessage.role !== "user") {
const { messages }: { messages: Message[]; data?: any } = body;
if (!isValidMessages(messages)) {
return NextResponse.json(

@@ -32,16 +34,16 @@ {

const agent = createWorkflow(messages, data);
// TODO: fix type in agent.run in LITS
const result = agent.run<AsyncGenerator<ChatResponseChunk>>(
userMessage.content,
) as unknown as Promise<StopEvent<AsyncGenerator<ChatResponseChunk>>>;
// convert the workflow events to a vercel AI stream data object
const agentStreamData = await workflowEventsToStreamData(
agent.streamEvents(),
);
// convert the workflow result to a vercel AI content stream
const stream = toDataStream(result, {
onFinal: () => agentStreamData.close(),
const chatHistory = convertToChatHistory(messages);
const userMessageContent = retrieveMessageContent(messages);
const workflow = await createWorkflow({ chatHistory });
const context = workflow.run({
message: userMessageContent,
streaming: true,
});
return new StreamingTextResponse(stream, {}, agentStreamData);
const { stream, dataStream } =
await createStreamFromWorkflowContext(context);
// Return the two streams in one response
return new StreamingTextResponse(stream, {}, dataStream);
} catch (error) {

@@ -48,0 +50,0 @@ console.error("[LlamaIndex]", error);

import {
Context,
HandlerContext,
StartEvent,

@@ -7,3 +7,3 @@ StopEvent,

WorkflowEvent,
} from "@llamaindex/core/workflow";
} from "@llamaindex/workflow";
import {

@@ -13,10 +13,9 @@ BaseToolWithCall,

ChatMessage,
ChatResponse,
ChatResponseChunk,
QueryEngineTool,
Settings,
ToolCall,
ToolCallLLM,
ToolCallLLMMessageOptions,
callTool,
} from "llamaindex";
import { callTools, chatWithTools } from "./tools";
import { AgentInput, AgentRunEvent } from "./type";

@@ -32,7 +31,19 @@

export class FunctionCallingAgent extends Workflow {
type FunctionCallingAgentContextData = {
streaming: boolean;
};
export type FunctionCallingAgentInput = AgentInput & {
displayName: string;
};
export class FunctionCallingAgent extends Workflow<
FunctionCallingAgentContextData,
FunctionCallingAgentInput,
string | AsyncGenerator<boolean | ChatResponseChunk<object>>
> {
name: string;
llm: ToolCallLLM;
memory: ChatMemoryBuffer;
tools: BaseToolWithCall[];
tools: BaseToolWithCall[] | QueryEngineTool[];
systemPrompt?: string;

@@ -59,3 +70,5 @@ writeEvents: boolean;

this.llm = options.llm ?? (Settings.llm as ToolCallLLM);
this.checkToolCallSupport();
if (!(this.llm instanceof ToolCallLLM)) {
throw new Error("LLM is not a ToolCallLLM");
}
this.memory = new ChatMemoryBuffer({

@@ -71,11 +84,23 @@ llm: this.llm,

// add steps
this.addStep(StartEvent<AgentInput>, this.prepareChatHistory, {
outputs: InputEvent,
});
this.addStep(InputEvent, this.handleLLMInput, {
outputs: [ToolCallEvent, StopEvent],
});
this.addStep(ToolCallEvent, this.handleToolCalls, {
outputs: InputEvent,
});
this.addStep(
{
inputs: [StartEvent<AgentInput>],
outputs: [InputEvent],
},
this.prepareChatHistory,
);
this.addStep(
{
inputs: [InputEvent],
outputs: [ToolCallEvent, StopEvent],
},
this.handleLLMInput,
);
this.addStep(
{
inputs: [ToolCallEvent],
outputs: [InputEvent],
},
this.handleToolCalls,
);
}

@@ -87,8 +112,8 @@

private async prepareChatHistory(
ctx: Context,
prepareChatHistory = async (
ctx: HandlerContext<FunctionCallingAgentContextData>,
ev: StartEvent<AgentInput>,
): Promise<InputEvent> {
const { message, streaming } = ev.data.input;
ctx.set("streaming", streaming);
): Promise<InputEvent> => {
const { message, streaming } = ev.data;
ctx.data.streaming = streaming ?? false;
this.writeEvent(`Start to work on: ${message}`, ctx);

@@ -100,111 +125,46 @@ if (this.systemPrompt) {

return new InputEvent({ input: this.chatHistory });
}
};
private async handleLLMInput(
ctx: Context,
handleLLMInput = async (
ctx: HandlerContext<FunctionCallingAgentContextData>,
ev: InputEvent,
): Promise<StopEvent<string | AsyncGenerator> | ToolCallEvent> {
if (ctx.get("streaming")) {
return await this.handleLLMInputStream(ctx, ev);
): Promise<StopEvent<string | AsyncGenerator> | ToolCallEvent> => {
const toolCallResponse = await chatWithTools(
this.llm,
this.tools,
this.chatHistory,
);
if (toolCallResponse.toolCallMessage) {
this.memory.put(toolCallResponse.toolCallMessage);
}
const result = await this.llm.chat({
messages: this.chatHistory,
tools: this.tools,
});
this.memory.put(result.message);
const toolCalls = this.getToolCallsFromResponse(result);
if (toolCalls.length) {
return new ToolCallEvent({ toolCalls });
if (toolCallResponse.hasToolCall()) {
return new ToolCallEvent({ toolCalls: toolCallResponse.toolCalls });
}
this.writeEvent("Finished task", ctx);
return new StopEvent({ result: result.message.content.toString() });
}
private async handleLLMInputStream(
context: Context,
ev: InputEvent,
): Promise<StopEvent<AsyncGenerator> | ToolCallEvent> {
const { llm, tools, memory } = this;
const llmArgs = { messages: this.chatHistory, tools };
const responseGenerator = async function* () {
const responseStream = await llm.chat({ ...llmArgs, stream: true });
let fullResponse = null;
let yieldedIndicator = false;
for await (const chunk of responseStream) {
const hasToolCalls = chunk.options && "toolCall" in chunk.options;
if (!hasToolCalls) {
if (!yieldedIndicator) {
yield false;
yieldedIndicator = true;
}
yield chunk;
} else if (!yieldedIndicator) {
yield true;
yieldedIndicator = true;
}
fullResponse = chunk;
if (ctx.data.streaming) {
if (!toolCallResponse.responseGenerator) {
throw new Error("No streaming response");
}
if (fullResponse?.options && Object.keys(fullResponse.options).length) {
memory.put({
role: "assistant",
content: "",
options: fullResponse.options,
});
yield fullResponse;
}
};
const generator = responseGenerator();
const isToolCall = await generator.next();
if (isToolCall.value) {
const fullResponse = await generator.next();
const toolCalls = this.getToolCallsFromResponse(
fullResponse.value as ChatResponseChunk<ToolCallLLMMessageOptions>,
);
return new ToolCallEvent({ toolCalls });
return new StopEvent(toolCallResponse.responseGenerator);
}
this.writeEvent("Finished task", context);
return new StopEvent({ result: generator });
}
const fullResponse = await toolCallResponse.asFullResponse();
this.memory.put(fullResponse);
return new StopEvent(fullResponse.content.toString());
};
private async handleToolCalls(
ctx: Context,
handleToolCalls = async (
ctx: HandlerContext<FunctionCallingAgentContextData>,
ev: ToolCallEvent,
): Promise<InputEvent> {
): Promise<InputEvent> => {
const { toolCalls } = ev.data;
const toolMsgs: ChatMessage[] = [];
const toolMsgs = await callTools({
tools: this.tools,
toolCalls,
ctx,
agentName: this.name,
});
for (const call of toolCalls) {
const targetTool = this.tools.find(
(tool) => tool.metadata.name === call.name,
);
// TODO: make logger optional in callTool in framework
const toolOutput = await callTool(targetTool, call, {
log: () => {},
error: (...args: unknown[]) => {
console.error(`[Tool ${call.name} Error]:`, ...args);
},
warn: () => {},
});
toolMsgs.push({
content: JSON.stringify(toolOutput.output),
role: "user",
options: {
toolResult: {
result: toolOutput.output,
isError: toolOutput.isError,
id: call.id,
},
},
});
}
for (const msg of toolMsgs) {

@@ -215,32 +175,13 @@ this.memory.put(msg);

return new InputEvent({ input: this.memory.getMessages() });
}
};
private writeEvent(msg: string, context: Context) {
writeEvent = (
msg: string,
ctx: HandlerContext<FunctionCallingAgentContextData>,
) => {
if (!this.writeEvents) return;
context.writeEventToStream({
data: new AgentRunEvent({ name: this.name, msg }),
});
}
private checkToolCallSupport() {
const { supportToolCall } = this.llm as ToolCallLLM;
if (!supportToolCall) throw new Error("LLM does not support tool calls");
}
private getToolCallsFromResponse(
response:
| ChatResponse<ToolCallLLMMessageOptions>
| ChatResponseChunk<ToolCallLLMMessageOptions>,
): ToolCall[] {
let options;
if ("message" in response) {
options = response.message.options;
} else {
options = response.options;
}
if (options && "toolCall" in options) {
return options.toolCall as ToolCall[];
}
return [];
}
ctx.sendEvent(
new AgentRunEvent({ agent: this.name, text: msg, type: "text" }),
);
};
}

@@ -1,8 +0,10 @@

import { StopEvent } from "@llamaindex/core/workflow";
import {
createCallbacksTransformer,
StopEvent,
WorkflowContext,
WorkflowEvent,
} from "@llamaindex/workflow";
import {
StreamData,
createStreamDataTransformer,
StreamData,
trimStartOfStreamHelper,
type AIStreamCallbacksAndOptions,
} from "ai";

@@ -12,55 +14,65 @@ import { ChatResponseChunk } from "llamaindex";

export function toDataStream(
result: Promise<StopEvent<AsyncGenerator<ChatResponseChunk>>>,
callbacks?: AIStreamCallbacksAndOptions,
) {
return toReadableStream(result)
.pipeThrough(createCallbacksTransformer(callbacks))
.pipeThrough(createStreamDataTransformer());
}
export async function createStreamFromWorkflowContext<Input, Output, Context>(
context: WorkflowContext<Input, Output, Context>,
): Promise<{ stream: ReadableStream<string>; dataStream: StreamData }> {
const trimStartOfStream = trimStartOfStreamHelper();
const dataStream = new StreamData();
const encoder = new TextEncoder();
let generator: AsyncGenerator<ChatResponseChunk> | undefined;
function toReadableStream(
result: Promise<StopEvent<AsyncGenerator<ChatResponseChunk>>>,
) {
const trimStartOfStream = trimStartOfStreamHelper();
return new ReadableStream<string>({
start(controller) {
controller.enqueue(""); // Kickstart the stream
const closeStreams = (controller: ReadableStreamDefaultController) => {
controller.close();
dataStream.close();
};
const mainStream = new ReadableStream({
async start(controller) {
// Kickstart the stream by sending an empty string
controller.enqueue(encoder.encode(""));
},
async pull(controller): Promise<void> {
const stopEvent = await result;
const generator = stopEvent.data.result;
const { value, done } = await generator.next();
async pull(controller) {
while (!generator) {
// get next event from workflow context
const { value: event, done } =
await context[Symbol.asyncIterator]().next();
if (done) {
closeStreams(controller);
return;
}
generator = handleEvent(event, dataStream);
}
const { value: chunk, done } = await generator.next();
if (done) {
controller.close();
closeStreams(controller);
return;
}
const text = trimStartOfStream(value.delta ?? "");
if (text) controller.enqueue(text);
const text = trimStartOfStream(chunk.delta ?? "");
if (text) {
controller.enqueue(encoder.encode(text));
}
},
});
return {
stream: mainStream.pipeThrough(createStreamDataTransformer()),
dataStream,
};
}
export async function workflowEventsToStreamData(
events: AsyncIterable<AgentRunEvent>,
): Promise<StreamData> {
const streamData = new StreamData();
(async () => {
for await (const event of events) {
if (event instanceof AgentRunEvent) {
const { name, msg } = event.data;
if ((streamData as any).isClosed) {
break;
}
streamData.appendMessageAnnotation({
type: "agent",
data: { agent: name, text: msg },
});
}
}
})();
return streamData;
function handleEvent(
event: WorkflowEvent<any>,
dataStream: StreamData,
): AsyncGenerator<ChatResponseChunk> | undefined {
// Handle for StopEvent
if (event instanceof StopEvent) {
return event.data as AsyncGenerator<ChatResponseChunk>;
}
// Handle for AgentRunEvent
if (event instanceof AgentRunEvent) {
dataStream.appendMessageAnnotation({
type: "agent",
data: event.data,
});
}
}

@@ -1,11 +0,24 @@

import { WorkflowEvent } from "@llamaindex/core/workflow";
import { WorkflowEvent } from "@llamaindex/workflow";
import { MessageContent } from "llamaindex";
export type AgentInput = {
message: string;
message: MessageContent;
streaming?: boolean;
};
export type AgentRunEventType = "text" | "progress";
export type ProgressEventData = {
id: string;
total: number;
current: number;
};
export type AgentRunEventData = ProgressEventData;
export class AgentRunEvent extends WorkflowEvent<{
name: string;
msg: string;
agent: string;
text: string;
type: AgentRunEventType;
data?: AgentRunEventData;
}> {}

@@ -30,3 +30,4 @@ {

"formdata-node": "^6.0.3",
"marked": "^14.1.2"
"marked": "^14.1.2",
"papaparse": "^5.4.1"
},

@@ -37,2 +38,4 @@ "devDependencies": {

"@types/node": "^20.9.5",
"@llamaindex/workflow": "^0.0.3",
"@types/papaparse": "^5.3.15",
"concurrently": "^8.2.2",

@@ -39,0 +42,0 @@ "eslint": "^8.54.0",

@@ -21,2 +21,3 @@ {

"@radix-ui/react-tabs": "^1.1.0",
"@llamaindex/chat-ui": "0.0.5",
"ai": "3.3.42",

@@ -33,2 +34,3 @@ "ajv": "^8.12.0",

"next": "^14.2.4",
"papaparse": "^5.4.1",
"react": "^18.2.0",

@@ -41,4 +43,3 @@ "react-dom": "^18.2.0",

"vaul": "^0.9.1",
"marked": "^14.1.2",
"@llamaindex/chat-ui": "0.0.5"
"marked": "^14.1.2"
},

@@ -50,2 +51,4 @@ "devDependencies": {

"@types/uuid": "^9.0.8",
"@llamaindex/workflow": "^0.0.3",
"@types/papaparse": "^5.3.15",
"autoprefixer": "^10.4.16",

@@ -52,0 +55,0 @@ "cross-env": "^7.0.3",

{
"name": "create-llama",
"version": "0.3.11",
"version": "0.3.12",
"description": "Create LlamaIndex-powered apps with one command",

@@ -5,0 +5,0 @@ "keywords": [

Sorry, the diff of this file is too big to display

Sorry, the diff of this file is not supported yet

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc