cwise
This library can be used to generate cache efficient map/reduce operations for ndarrays.
Usage
First, install using npm:
npm install cwise
Then you can create an ndarray operation as follows:
var cwise = require("cwise")
, ndarray = require("ndarray")
var addeq = cwise({
args: ["array", "array"],
body: function(a, b) {
a += b
}
})
var X = ndarray(new Float32Array(128*128), [128,128])
var Y = ndarray(new Float32Array(128*128), [128,128])
addeq(X, Y)
Formally, you can think of addeq(X,Y)
as being something like the following for-loop, except optimized with respect to the dimension and order of X and Y:
for(var i=0; i<X.shape[0]; ++i) {
for(var j=0; j<X.shape[1]; ++j) {
X.set(i,j, X.get(i,j) + Y.get(i,j))
}
}
require("cwise")(user_args)
To use the library, you pass it an object with the following fields:
args
: (Required) An array describing the type of the arguments passed to the body. These may be one of the following:
"array"
: An ndarray
-type argument"scalar"
: A globally broadcasted scalar argument"index"
: (Hidden) An array representing the current index of the element being processed. Initially [0,0,...] in the pre block and set to some undefined value in the post block."shape"
: (Hidden) An array representing the shape of the arrays being processed- (Hidden) An object containing two properties reprsenting an offset pointer from an array argument.
offset
An array representing the relative offset of the objectarray
The index of an array parameter
pre
: A function to be executed before starting the loopbody
: (Required) A function that gets applied to each element of the input arrayspost
: Executed when loop completesprintCode
: If this flag is set, then log all generated codeblockSize
: The size of a block (default 32)funcName
: The name to give to the generated procedure for debugging/profiling purposes. (Default is body.name||"cwise"
)
The result is a procedure that you can call which executes these methods along the following lines:
function(a0, a1, ...) {
pre()
for(var i=0; i<a0.shape[0]; ++i) {
for(var j=0; j<a0.shape[1]; ++j) {
...
body(a0[i,j,...], a1[i,j,...], ... )
}
}
post()
}
Notes
- To pass variables between the pre/body/post, use
this.*
- The order in which variables get visited depends on the stride ordering if the input arrays. In general it is not safe to assume that elements get visited (co)lexicographically.
- If no return statement is specified, the first ndarray argument is returned
- All input arrays must have the same shape. If not, then the library will throw an error
As a browserify transform
If bundle size is an issue for you, it is possible to use cwise as a browserify transform, thus avoiding the potentially large parser dependencies. To do this, add the following lines to your package.json:
{
"browserify": {
"transform": [ "cwise" ]
}
}
Then when you use the module with browserify, only the cwise-compile submodule will get loaded into your script instead of all of esprima. Note that this step is optional and the library will still work in the browser even if you don't use a transform.
Examples
Here are a few recipes showing how to use cwise to implement some common operations to get you started:
Multiply an array with a scalar
var muls = cwise({
args: ["array", "scalar"],
body: function(a, s) {
a *= s
}
})
muls(array, 2.0)
Initialize an array with a grid with the first index
var mgrid = cwise({
args: ["index", "array"],
body: function(i, a) {
a = i[0]
}
})
var X = mgrid(ndarray(new Float32Array(128)))
Check if any element is set
var any = cwise({
args: ["array"],
body: function(a) {
if(a) {
return true
}
},
post: function() {
return false
}
})
if(any(array)) {
}
Apply a stencil to an array
var laplacian = cwise({
args:["array", "array", {offset:[0,1], array:1}, {offset:[0,-1], array:1}, {offset:[1,0], array:1}, {offset:[-1,0], array:1}],
body:function(a, c, n, s, e, w) {
a = 0.25 * (n + s + e + w) - c
}
})
laplacian(next, prev)
Compute the sum of all the elements in an array
var sum = cwise({
args: ["array"],
pre: function() {
this.sum = 0
},
body: function(a) {
this.sum += a
},
post: function() {
return this.sum
}
})
s = sum(array)
Note that variables stored in this
are common to all the blocks
Compute the index of the maximum element of an array:
var argmin = cwise({
args: ["index", "array"],
pre: function(index) {
this.min_v = Number.POSITIVE_INFINITY
this.min_index = index.slice(0)
},
body: function(index, a) {
if(a < this.min_v) {
this.min_v = a
for(var i=0; i<index.length; ++i) {
this.min_index[i] = index[i]
}
}
},
post: function() {
return this.min_index
}
})
argmin(X)
FAQ
Is it fast?
Yes
How does it work?
You can think of cwise as a type of macro language on top of JavaScript. Internally, cwise uses node-falafel to parse the functions you give it and sanitize their arguments. At run time, code for each array operation is generated lazily depending on the ordering and stride of the input arrays so that you get optimal cache performance. These compiled functions are then memoized for future calls to the same function. As a result, you should reuse array operations as much as possible to avoid wasting time and memory regenerating common functions.
Credits
(c) 2013 Mikola Lysenko. MIT License