Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

cytoscape-fcose

Package Overview
Dependencies
Maintainers
1
Versions
9
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

cytoscape-fcose - npm Package Compare versions

Comparing version 1.2.3 to 2.0.0

demo/demo-compound.html

4

package.json
{
"name": "cytoscape-fcose",
"version": "1.2.3",
"version": "2.0.0",
"description": "The fCoSE layout for Cytoscape.js by Bilkent with fast compound node placement",

@@ -54,4 +54,4 @@ "main": "cytoscape-fcose.js",

"dependencies": {
"cose-base": "^1.0.0"
"cose-base": "^2.0.0"
}
}

@@ -7,6 +7,21 @@ cytoscape-fcose

fCoSE (fast Compound Spring Embedder) is a faster version of our earlier compound spring embedder algorithm named [CoSE](https://github.com/cytoscape/cytoscape.js-cose-bilkent), implemented as a Cytoscape.js extension by [i-Vis Lab](http://cs.bilkent.edu.tr/~ivis/) in Bilkent University ([demo](https://ivis-at-bilkent.github.io/cytoscape.js-fcose/demo.html), [compound demo](https://ivis-at-bilkent.github.io/cytoscape.js-fcose/demo-compound.html))
fCoSE (fast Compound Spring Embedder) is a faster version of our earlier compound spring embedder algorithm named [CoSE](https://github.com/cytoscape/cytoscape.js-cose-bilkent), implemented as a Cytoscape.js extension by [i-Vis Lab](http://cs.bilkent.edu.tr/~ivis/) in Bilkent University.
fCoSE layout algorithm combines the speed of spectral layout with the aesthetics of force-directed layout. fCoSE runs up to 10 times as fast as CoSE while achieving similar aesthetics. In addition, fCoSE supports varying (non-uniform) node dimensions similar to its predecessor CoSE.
<p align="center"> <a href="https://ivis-at-bilkent.github.io/cytoscape.js-fcose/demo/demo.html" title="Simple Demo">DEMO (simple)</a>
&nbsp;&nbsp;&nbsp;&nbsp;
<a href="https://ivis-at-bilkent.github.io/cytoscape.js-fcose/demo/demo-compound.html" title="Compound Demo">DEMO (compound)</a>
&nbsp;&nbsp;&nbsp;&nbsp;
<a href="https://ivis-at-bilkent.github.io/cytoscape.js-fcose/demo/demo-constraint.html" title="Constraint Demo">DEMO (constraint)</a>
</p>
fCoSE layout algorithm combines the speed of spectral layout with the aesthetics of force-directed layout. fCoSE runs up to 2 times as fast as CoSE while achieving similar aesthetics.
<p align="center"><img src="demo/demo.gif" width="440"></p>
Furthermore, fCoSE also supports a fairly rich set of constraint types (i.e., fixed position, vertical/horizontal alignment and relative placement).
<p align="center"><img src="demo/incrementalConstraints.gif" width="800"></p>
You can see constraint support in action in the following videos: [fixed node](https://youtu.be/OTke5XQXzQA), [alignment](https://youtu.be/XCj_-_cTuRc), [relative placement](https://youtu.be/k0PmRliwdmo), [hybrid](https://youtu.be/cS3rkTyIMqU), [real life graphs](https://youtu.be/S7aIr9cNKbI). Constraints can also be added [incrementally](https://youtu.be/mxRKGvzM900) on a given layout.
Please cite the following when you use this layout until an fCoSE publication is available:

@@ -18,11 +33,32 @@

<p align="center"><img src="demo.gif" width="480"></p>
## Dependencies
* Cytoscape.js ^3.2.0
* cose-base ^1.0.0
* cose-base ^2.0.0
* cytoscape-layout-utilities.js (optional for packing disconnected components) ^1.0.0
## Documentation
fCoSE supports user-defined placement constraints as well as its full support for compound graphs. These constraints may be defined for simple nodes. Supported constraint types are:
* **Fixed node constraint:** The user may provide *exact* desired positions for a set of nodes called *fixed nodes*. For example, in order to position node *n1* to *(x: 100, y: 200)* and node *n2* to *(x: 200, y: -300)* as a result of the layout, ```fixedNodeConstraint``` option should be set as follows:
```js
fixedNodeConstraint: [{nodeId: 'n1', position: {x: 100, y: 200}},
{nodeId: 'n2', position: {x: 200, y: -300}}],
```
* **Alignment constraint:** This constraint aims to align two or more nodes (with respect to their centers) vertically or horizontally. For example, for the vertical alignment of nodes {*n1, n2, n3*} and {*n4, n5*}, and horizontal alignment of nodes {*n2, n4*} as a result of the layout, ```alignmentConstraint``` option should be set as follows:
```js
alignmentConstraint: {vertical: [['n1', 'n2', 'n3'], ['n4', 'n5']], horizontal: [['n2', 'n4']]},
```
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;***Note:** Alignment constraints in a direction must be given in most compact form. Example: ```['n1', 'n2', 'n3']``` instead of ```['n1', 'n2'], ['n1', 'n3']```.*
* **Relative placement constraint:** The user may constrain the position of a node relative to another node in either vertical or horizontal direction. For example, in order to position node *n1* to be above of node *n2* by at least 100 pixels and position node *n3* to be on the left of node *n4* by at least 75 pixels as a result of the layout, ```relativePlacementConstraint``` option should be set as follows:
```js
relativePlacementConstraint: [{top: 'n1', bottom: 'n2', gap: 100},
{left: 'n3', right: 'n4', gap: 75}],
```
## Usage instructions

@@ -103,2 +139,4 @@

packComponents: true,
// Layout step - all, transformed, enforced, cose - for debug purpose only
step: "all",

@@ -119,7 +157,7 @@ /* spectral layout options */

// Node repulsion (non overlapping) multiplier
nodeRepulsion: 4500,
nodeRepulsion: node => 4500,
// Ideal edge (non nested) length
idealEdgeLength: 50,
idealEdgeLength: edge => 50,
// Divisor to compute edge forces
edgeElasticity: 0.45,
edgeElasticity: edge => 0.45,
// Nesting factor (multiplier) to compute ideal edge length for nested edges

@@ -144,4 +182,16 @@ nestingFactor: 0.1,

// Initial cooling factor for incremental layout
initialEnergyOnIncremental: 0.3,
initialEnergyOnIncremental: 0.3,
/* constraint options */
// Fix desired nodes to predefined positions
// [{nodeId: 'n1', position: {x: 100, y: 200}}, {...}]
fixedNodeConstraint: undefined,
// Align desired nodes in vertical/horizontal direction
// {vertical: [['n1', 'n2'], [...]], horizontal: [['n2', 'n4'], [...]]}
alignmentConstraint: undefined,
// Place two nodes relatively in vertical/horizontal direction
// [{top: 'n1', bottom: 'n2', gap: 100}, {left: 'n3', right: 'n4', gap: 75}, {...}]
relativePlacementConstraint: undefined,
/* layout event callbacks */

@@ -148,0 +198,0 @@ ready: () => {}, // on layoutready

@@ -9,126 +9,2 @@ /*

auxiliary.multMat = function(array1, array2){
let result = [];
for(let i = 0; i < array1.length; i++){
result[i] = [];
for(let j = 0; j < array2[0].length; j++){
result[i][j] = 0;
for(let k = 0; k < array1[0].length; k++){
result[i][j] += array1[i][k] * array2[k][j];
}
}
}
return result;
};
auxiliary.multGamma = function(array){
let result = [];
let sum = 0;
for(let i = 0; i < array.length; i++){
sum += array[i];
}
sum *= (-1)/array.length;
for(let i = 0; i < array.length; i++){
result[i] = sum + array[i];
}
return result;
};
auxiliary.multL = function(array, C, INV){
let result = [];
let temp1 = [];
let temp2 = [];
// multiply by C^T
for(let i = 0; i < C[0].length; i++){
let sum = 0;
for(let j = 0; j < C.length; j++){
sum += -0.5 * C[j][i] * array[j];
}
temp1[i] = sum;
}
// multiply the result by INV
for(let i = 0; i < INV.length; i++){
let sum = 0;
for(let j = 0; j < INV.length; j++){
sum += INV[i][j] * temp1[j];
}
temp2[i] = sum;
}
// multiply the result by C
for(let i = 0; i < C.length; i++){
let sum = 0;
for(let j = 0; j < C[0].length; j++){
sum += C[i][j] * temp2[j];
}
result[i] = sum;
}
return result;
};
auxiliary.multCons = function(array, constant){
let result = [];
for(let i = 0; i < array.length; i++){
result[i] = array[i] * constant;
}
return result;
};
// assumes arrays have same size
auxiliary.minusOp = function(array1, array2){
let result = [];
for(let i = 0; i < array1.length; i++){
result[i] = array1[i] - array2[i];
}
return result;
};
// assumes arrays have same size
auxiliary.dotProduct = function(array1, array2){
let product = 0;
for(let i = 0; i < array1.length; i++){
product += array1[i] * array2[i];
}
return product;
};
auxiliary.mag = function(array){
return Math.sqrt(this.dotProduct(array, array));
};
auxiliary.normalize = function(array){
let result = [];
let magnitude = this.mag(array);
for(let i = 0; i < array.length; i++){
result[i] = array[i] / magnitude;
}
return result;
};
auxiliary.transpose = function(array){
let result = [];
for(let i = 0; i < array[0].length; i++){
result[i] = [];
for(let j = 0; j < array.length; j++){
result[i][j] = array[j][i];
}
}
return result;
};
// get the top most nodes

@@ -192,3 +68,3 @@ auxiliary.getTopMostNodes = function(nodes) {

currentNode.neighborhood().nodes().forEach(function(node){
if(eles.intersection(currentNode.edgesWith(node))){
if(eles.intersection(currentNode.edgesWith(node)).length > 0){
neighborNodes.merge(node);

@@ -312,635 +188,2 @@ }

/* Below singular value decomposition (svd) code including hypot function is adopted from https://github.com/dragonfly-ai/JamaJS
Some changes are applied to make the code compatible with the fcose code and to make it independent from Jama.
Input matrix is changed to a 2D array instead of Jama matrix. Matrix dimensions are taken according to 2D array instead of using Jama functions.
An object that includes singular value components is created for return.
The types of input parameters of the hypot function are removed.
let is used instead of var for the variable initialization.
*/
/*
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright {yyyy} {name of copyright owner}
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
auxiliary.svd = function (A) {
this.U = null;
this.V = null;
this.s = null;
this.m = 0;
this.n = 0;
this.m = A.length;
this.n = A[0].length;
let nu = Math.min(this.m, this.n);
this.s = (function (s) {
let a = [];
while (s-- > 0)
a.push(0);
return a;
})(Math.min(this.m + 1, this.n));
this.U = (function (dims) {
let allocate = function (dims) {
if (dims.length == 0) {
return 0;
} else {
let array = [];
for (let i = 0; i < dims[0]; i++) {
array.push(allocate(dims.slice(1)));
}
return array;
}
};
return allocate(dims);
})([this.m, nu]);
this.V = (function (dims) {
let allocate = function (dims) {
if (dims.length == 0) {
return 0;
} else {
let array = [];
for (let i = 0; i < dims[0]; i++) {
array.push(allocate(dims.slice(1)));
}
return array;
}
};
return allocate(dims);
})([this.n, this.n]);
let e = (function (s) {
let a = [];
while (s-- > 0)
a.push(0);
return a;
})(this.n);
let work = (function (s) {
let a = [];
while (s-- > 0)
a.push(0);
return a;
})(this.m);
let wantu = true;
let wantv = true;
let nct = Math.min(this.m - 1, this.n);
let nrt = Math.max(0, Math.min(this.n - 2, this.m));
for (let k = 0; k < Math.max(nct, nrt); k++) {
if (k < nct) {
this.s[k] = 0;
for (let i = k; i < this.m; i++) {
this.s[k] = auxiliary.hypot(this.s[k], A[i][k]);
}
;
if (this.s[k] !== 0.0) {
if (A[k][k] < 0.0) {
this.s[k] = -this.s[k];
}
for (let i = k; i < this.m; i++) {
A[i][k] /= this.s[k];
}
;
A[k][k] += 1.0;
}
this.s[k] = -this.s[k];
}
for (let j = k + 1; j < this.n; j++) {
if ((function (lhs, rhs) {
return lhs && rhs;
})((k < nct), (this.s[k] !== 0.0))) {
let t = 0;
for (let i = k; i < this.m; i++) {
t += A[i][k] * A[i][j];
}
;
t = -t / A[k][k];
for (let i = k; i < this.m; i++) {
A[i][j] += t * A[i][k];
}
;
}
e[j] = A[k][j];
}
;
if ((function (lhs, rhs) {
return lhs && rhs;
})(wantu, (k < nct))) {
for (let i = k; i < this.m; i++) {
this.U[i][k] = A[i][k];
}
;
}
if (k < nrt) {
e[k] = 0;
for (let i = k + 1; i < this.n; i++) {
e[k] = auxiliary.hypot(e[k], e[i]);
}
;
if (e[k] !== 0.0) {
if (e[k + 1] < 0.0) {
e[k] = -e[k];
}
for (let i = k + 1; i < this.n; i++) {
e[i] /= e[k];
}
;
e[k + 1] += 1.0;
}
e[k] = -e[k];
if ((function (lhs, rhs) {
return lhs && rhs;
})((k + 1 < this.m), (e[k] !== 0.0))) {
for (let i = k + 1; i < this.m; i++) {
work[i] = 0.0;
}
;
for (let j = k + 1; j < this.n; j++) {
for (let i = k + 1; i < this.m; i++) {
work[i] += e[j] * A[i][j];
}
;
}
;
for (let j = k + 1; j < this.n; j++) {
let t = -e[j] / e[k + 1];
for (let i = k + 1; i < this.m; i++) {
A[i][j] += t * work[i];
}
;
}
;
}
if (wantv) {
for (let i = k + 1; i < this.n; i++) {
this.V[i][k] = e[i];
};
}
}
};
let p = Math.min(this.n, this.m + 1);
if (nct < this.n) {
this.s[nct] = A[nct][nct];
}
if (this.m < p) {
this.s[p - 1] = 0.0;
}
if (nrt + 1 < p) {
e[nrt] = A[nrt][p - 1];
}
e[p - 1] = 0.0;
if (wantu) {
for (let j = nct; j < nu; j++) {
for (let i = 0; i < this.m; i++) {
this.U[i][j] = 0.0;
}
;
this.U[j][j] = 1.0;
};
for (let k = nct - 1; k >= 0; k--) {
if (this.s[k] !== 0.0) {
for (let j = k + 1; j < nu; j++) {
let t = 0;
for (let i = k; i < this.m; i++) {
t += this.U[i][k] * this.U[i][j];
};
t = -t / this.U[k][k];
for (let i = k; i < this.m; i++) {
this.U[i][j] += t * this.U[i][k];
};
};
for (let i = k; i < this.m; i++) {
this.U[i][k] = -this.U[i][k];
};
this.U[k][k] = 1.0 + this.U[k][k];
for (let i = 0; i < k - 1; i++) {
this.U[i][k] = 0.0;
};
} else {
for (let i = 0; i < this.m; i++) {
this.U[i][k] = 0.0;
};
this.U[k][k] = 1.0;
}
};
}
if (wantv) {
for (let k = this.n - 1; k >= 0; k--) {
if ((function (lhs, rhs) {
return lhs && rhs;
})((k < nrt), (e[k] !== 0.0))) {
for (let j = k + 1; j < nu; j++) {
let t = 0;
for (let i = k + 1; i < this.n; i++) {
t += this.V[i][k] * this.V[i][j];
};
t = -t / this.V[k + 1][k];
for (let i = k + 1; i < this.n; i++) {
this.V[i][j] += t * this.V[i][k];
};
};
}
for (let i = 0; i < this.n; i++) {
this.V[i][k] = 0.0;
};
this.V[k][k] = 1.0;
};
}
let pp = p - 1;
let iter = 0;
let eps = Math.pow(2.0, -52.0);
let tiny = Math.pow(2.0, -966.0);
while ((p > 0)) {
let k = void 0;
let kase = void 0;
for (k = p - 2; k >= -1; k--) {
if (k === -1) {
break;
}
if (Math.abs(e[k]) <= tiny + eps * (Math.abs(this.s[k]) + Math.abs(this.s[k + 1]))) {
e[k] = 0.0;
break;
}
};
if (k === p - 2) {
kase = 4;
} else {
let ks = void 0;
for (ks = p - 1; ks >= k; ks--) {
if (ks === k) {
break;
}
let t = (ks !== p ? Math.abs(e[ks]) : 0.0) + (ks !== k + 1 ? Math.abs(e[ks - 1]) : 0.0);
if (Math.abs(this.s[ks]) <= tiny + eps * t) {
this.s[ks] = 0.0;
break;
}
};
if (ks === k) {
kase = 3;
} else if (ks === p - 1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
switch ((kase)) {
case 1:
{
let f = e[p - 2];
e[p - 2] = 0.0;
for (let j = p - 2; j >= k; j--) {
let t = auxiliary.hypot(this.s[j], f);
let cs = this.s[j] / t;
let sn = f / t;
this.s[j] = t;
if (j !== k) {
f = -sn * e[j - 1];
e[j - 1] = cs * e[j - 1];
}
if (wantv) {
for (let i = 0; i < this.n; i++) {
t = cs * this.V[i][j] + sn * this.V[i][p - 1];
this.V[i][p - 1] = -sn * this.V[i][j] + cs * this.V[i][p - 1];
this.V[i][j] = t;
};
}
};
};
break;
case 2:
{
let f = e[k - 1];
e[k - 1] = 0.0;
for (let j = k; j < p; j++) {
let t = auxiliary.hypot(this.s[j], f);
let cs = this.s[j] / t;
let sn = f / t;
this.s[j] = t;
f = -sn * e[j];
e[j] = cs * e[j];
if (wantu) {
for (let i = 0; i < this.m; i++) {
t = cs * this.U[i][j] + sn * this.U[i][k - 1];
this.U[i][k - 1] = -sn * this.U[i][j] + cs * this.U[i][k - 1];
this.U[i][j] = t;
};
}
};
};
break;
case 3:
{
let scale = Math.max(Math.max(Math.max(Math.max(Math.abs(this.s[p - 1]), Math.abs(this.s[p - 2])), Math.abs(e[p - 2])), Math.abs(this.s[k])), Math.abs(e[k]));
let sp = this.s[p - 1] / scale;
let spm1 = this.s[p - 2] / scale;
let epm1 = e[p - 2] / scale;
let sk = this.s[k] / scale;
let ek = e[k] / scale;
let b = ((spm1 + sp) * (spm1 - sp) + epm1 * epm1) / 2.0;
let c = (sp * epm1) * (sp * epm1);
let shift = 0.0;
if ((function (lhs, rhs) {
return lhs || rhs;
})((b !== 0.0), (c !== 0.0))) {
shift = Math.sqrt(b * b + c);
if (b < 0.0) {
shift = -shift;
}
shift = c / (b + shift);
}
let f = (sk + sp) * (sk - sp) + shift;
let g = sk * ek;
for (let j = k; j < p - 1; j++) {
let t = auxiliary.hypot(f, g);
let cs = f / t;
let sn = g / t;
if (j !== k) {
e[j - 1] = t;
}
f = cs * this.s[j] + sn * e[j];
e[j] = cs * e[j] - sn * this.s[j];
g = sn * this.s[j + 1];
this.s[j + 1] = cs * this.s[j + 1];
if (wantv) {
for (let i = 0; i < this.n; i++) {
t = cs * this.V[i][j] + sn * this.V[i][j + 1];
this.V[i][j + 1] = -sn * this.V[i][j] + cs * this.V[i][j + 1];
this.V[i][j] = t;
};
}
t = auxiliary.hypot(f, g);
cs = f / t;
sn = g / t;
this.s[j] = t;
f = cs * e[j] + sn * this.s[j + 1];
this.s[j + 1] = -sn * e[j] + cs * this.s[j + 1];
g = sn * e[j + 1];
e[j + 1] = cs * e[j + 1];
if (wantu && (j < this.m - 1)) {
for (let i = 0; i < this.m; i++) {
t = cs * this.U[i][j] + sn * this.U[i][j + 1];
this.U[i][j + 1] = -sn * this.U[i][j] + cs * this.U[i][j + 1];
this.U[i][j] = t;
};
}
};
e[p - 2] = f;
iter = iter + 1;
};
break;
case 4:
{
if (this.s[k] <= 0.0) {
this.s[k] = (this.s[k] < 0.0 ? -this.s[k] : 0.0);
if (wantv) {
for (let i = 0; i <= pp; i++) {
this.V[i][k] = -this.V[i][k];
};
}
}
while ((k < pp)) {
if (this.s[k] >= this.s[k + 1]) {
break;
}
let t = this.s[k];
this.s[k] = this.s[k + 1];
this.s[k + 1] = t;
if (wantv && (k < this.n - 1)) {
for (let i = 0; i < this.n; i++) {
t = this.V[i][k + 1];
this.V[i][k + 1] = this.V[i][k];
this.V[i][k] = t;
};
}
if (wantu && (k < this.m - 1)) {
for (let i = 0; i < this.m; i++) {
t = this.U[i][k + 1];
this.U[i][k + 1] = this.U[i][k];
this.U[i][k] = t;
};
}
k++;
};
iter = 0;
p--;
};
break;
}
};
let result = {U: this.U, V: this.V, S: this.s};
return result;
};
// sqrt(a^2 + b^2) without under/overflow.
auxiliary.hypot = function(a, b) {
let r;
if (Math.abs(a) > Math.abs(b)) {
r = b/a;
r = Math.abs(a)*Math.sqrt(1+r*r);
} else if (b != 0) {
r = a/b;
r = Math.abs(b)*Math.sqrt(1+r*r);
} else {
r = 0.0;
}
return r;
};
module.exports = auxiliary;

@@ -32,2 +32,12 @@ /**

const isFn = fn => typeof fn === 'function';
const optFn = ( opt, ele ) => {
if( isFn( opt ) ){
return opt( ele );
} else {
return opt;
}
};
/**** Postprocessing functions ****/

@@ -71,4 +81,5 @@

}
// Attach id to the layout node
// Attach id to the layout node and repulsion value
theNode.id = theChild.data("id");
theNode.nodeRepulsion = optFn( options.nodeRepulsion, theChild );
// Attach the paddings of cy node to layout node

@@ -83,8 +94,6 @@ theNode.paddingLeft = parseInt( theChild.css('padding') );

if(theChild.isParent()){
let labelWidth = theChild.boundingBox({ includeLabels: true, includeNodes: false }).w;
let labelHeight = theChild.boundingBox({ includeLabels: true, includeNodes: false }).h;
let labelPos = theChild.css("text-halign");
theNode.labelWidth = labelWidth;
theNode.labelHeight = labelHeight;
theNode.labelPos = labelPos;
theNode.labelWidth = theChild.boundingBox({ includeLabels: true, includeNodes: false, includeOverlays: false }).w;
theNode.labelHeight = theChild.boundingBox({ includeLabels: true, includeNodes: false, includeOverlays: false }).h;
theNode.labelPosVertical = theChild.css("text-valign");
theNode.labelPosHorizontal = theChild.css("text-halign");
}

@@ -114,2 +123,4 @@ }

let processEdges = function(layout, gm, edges){
let idealLengthTotal = 0;
let edgeCount = 0;
for (let i = 0; i < edges.length; i++) {

@@ -122,14 +133,40 @@ let edge = edges[i];

e1.id = edge.id();
e1.idealLength = optFn( options.idealEdgeLength, edge );
e1.edgeElasticity = optFn( options.edgeElasticity, edge );
idealLengthTotal += e1.idealLength;
edgeCount++;
}
}
};
// we need to update the ideal edge length constant with the avg. ideal length value after processing edges
// in case there is no edge, use other options
if (options.idealEdgeLength != null){
if (edges.length > 0)
CoSEConstants.DEFAULT_EDGE_LENGTH = FDLayoutConstants.DEFAULT_EDGE_LENGTH = idealLengthTotal / edgeCount;
else if(!isFn(options.idealEdgeLength)) // in case there is no edge, but option gives a value to use
CoSEConstants.DEFAULT_EDGE_LENGTH = FDLayoutConstants.DEFAULT_EDGE_LENGTH = options.idealEdgeLength;
else // in case there is no edge and we cannot get a value from option (because it's a function)
CoSEConstants.DEFAULT_EDGE_LENGTH = FDLayoutConstants.DEFAULT_EDGE_LENGTH = 50;
// we need to update these constant values based on the ideal edge length constant
CoSEConstants.MIN_REPULSION_DIST = FDLayoutConstants.MIN_REPULSION_DIST = FDLayoutConstants.DEFAULT_EDGE_LENGTH / 10.0;
CoSEConstants.DEFAULT_RADIAL_SEPARATION = FDLayoutConstants.DEFAULT_EDGE_LENGTH;
}
};
// transfer cytoscape constraints to cose layout
let processConstraints = function(layout, options){
// get nodes to be fixed
if(options.fixedNodeConstraint){
layout.constraints["fixedNodeConstraint"] = options.fixedNodeConstraint;
}
// get nodes to be aligned
if(options.alignmentConstraint){
layout.constraints["alignmentConstraint"] = options.alignmentConstraint;
}
// get nodes to be relatively placed
if(options.relativePlacementConstraint){
layout.constraints["relativePlacementConstraint"] = options.relativePlacementConstraint;
}
};
/**** Apply postprocessing ****/
if (options.nodeRepulsion != null)
CoSEConstants.DEFAULT_REPULSION_STRENGTH = FDLayoutConstants.DEFAULT_REPULSION_STRENGTH = options.nodeRepulsion;
if (options.idealEdgeLength != null)
CoSEConstants.DEFAULT_EDGE_LENGTH = FDLayoutConstants.DEFAULT_EDGE_LENGTH = options.idealEdgeLength;
if (options.edgeElasticity != null)
CoSEConstants.DEFAULT_SPRING_STRENGTH = FDLayoutConstants.DEFAULT_SPRING_STRENGTH = options.edgeElasticity;
if (options.nestingFactor != null)

@@ -167,4 +204,35 @@ CoSEConstants.PER_LEVEL_IDEAL_EDGE_LENGTH_FACTOR = FDLayoutConstants.PER_LEVEL_IDEAL_EDGE_LENGTH_FACTOR = options.nestingFactor;

LayoutConstants.DEFAULT_UNIFORM_LEAF_NODE_SIZES = options.uniformNodeDimensions;
CoSEConstants.TREE_REDUCTION_ON_INCREMENTAL = options.randomize ? true : false;
// This part is for debug/demo purpose
if(options.step == "transformed"){
CoSEConstants.TRANSFORM_ON_CONSTRAINT_HANDLING = true;
CoSEConstants.ENFORCE_CONSTRAINTS = false;
CoSEConstants.APPLY_LAYOUT = false;
}
if(options.step == "enforced"){
CoSEConstants.TRANSFORM_ON_CONSTRAINT_HANDLING = false;
CoSEConstants.ENFORCE_CONSTRAINTS = true;
CoSEConstants.APPLY_LAYOUT = false;
}
if(options.step == "cose"){
CoSEConstants.TRANSFORM_ON_CONSTRAINT_HANDLING = false;
CoSEConstants.ENFORCE_CONSTRAINTS = false;
CoSEConstants.APPLY_LAYOUT = true;
}
if(options.step == "all"){
if(options.randomize)
CoSEConstants.TRANSFORM_ON_CONSTRAINT_HANDLING = true;
else
CoSEConstants.TRANSFORM_ON_CONSTRAINT_HANDLING = false;
CoSEConstants.ENFORCE_CONSTRAINTS = true;
CoSEConstants.APPLY_LAYOUT = true;
}
if(options.randomize && !(options.fixedNodeConstraint || options.alignmentConstraint || options.relativePlacementConstraint)){
CoSEConstants.TREE_REDUCTION_ON_INCREMENTAL = true;
}
else{
CoSEConstants.TREE_REDUCTION_ON_INCREMENTAL = false;
}
let coseLayout = new CoSELayout();

@@ -174,4 +242,4 @@ let gm = coseLayout.newGraphManager();

processChildrenList(gm.addRoot(), aux.getTopMostNodes(nodes), coseLayout, options);
processEdges(coseLayout, gm, edges);
processConstraints(coseLayout, options);

@@ -178,0 +246,0 @@ coseLayout.runLayout();

@@ -36,2 +36,4 @@ /**

packComponents: true,
// Layout step - all, transformed, enforced, cose - for debug purpose only
step: "all",

@@ -52,7 +54,7 @@ /* spectral layout options */

// Node repulsion (non overlapping) multiplier
nodeRepulsion: 4500,
nodeRepulsion: node => 4500,
// Ideal edge (non nested) length
idealEdgeLength: 50,
idealEdgeLength: edge => 50,
// Divisor to compute edge forces
edgeElasticity: 0.45,
edgeElasticity: edge => 0.45,
// Nesting factor (multiplier) to compute ideal edge length for nested edges

@@ -77,4 +79,16 @@ nestingFactor: 0.1,

// Initial cooling factor for incremental layout
initialEnergyOnIncremental: 0.3,
initialEnergyOnIncremental: 0.3,
/* constraint options */
// Fix required nodes to predefined positions
// [{nodeId: 'n1', position: {x: 100, y: 200}, {...}]
fixedNodeConstraint: undefined,
// Align required nodes in vertical/horizontal direction
// {vertical: [['n1', 'n2')], ['n3', 'n4']], horizontal: ['n2', 'n4']}
alignmentConstraint: undefined,
// Place two nodes relatively in vertical/horizontal direction
// [{top: 'n1', bottom: 'n2', gap: 100}, {left: 'n3', right: 'n4', gap: 75}]
relativePlacementConstraint: undefined,
/* layout event callbacks */

@@ -102,2 +116,11 @@ ready: () => {}, // on layoutready

let constraintExist = options.fixedNodeConstraint || options.alignmentConstraint || options.relativePlacementConstraint;
// if any constraint exists, set some options
if(constraintExist){
// constraints work with these options
options.tile = false;
options.packComponents = false;
}
// decide component packing is enabled or not

@@ -113,29 +136,27 @@ let layUtil;

// if packing is not enabled, perform layout on the whole graph
if(!packingEnabled){
if(options.randomize){
// Apply spectral layout
spectralResult.push(spectralLayout(options));
xCoords = spectralResult[0]["xCoords"];
yCoords = spectralResult[0]["yCoords"];
if(eles.nodes().length > 0) {
// if packing is not enabled, perform layout on the whole graph
if(!packingEnabled){
if(options.randomize){
let result = spectralLayout(options); // apply spectral layout
spectralResult.push(result);
}
// apply cose layout as postprocessing
if(options.quality == "default" || options.quality == "proof"){
coseResult.push(coseLayout(options, spectralResult[0]));
}
}
else{ // packing is enabled
let topMostNodes = aux.getTopMostNodes(options.eles.nodes());
components = aux.connectComponents(cy, options.eles, topMostNodes);
//send each component to spectral layout
if(options.randomize){
components.forEach(function(component){
options.eles = component;
spectralResult.push(spectralLayout(options));
});
}
// Apply cose layout as postprocessing
if(options.quality == "default" || options.quality == "proof"){
coseResult.push(coseLayout(options, spectralResult[0]));
}
}
else{ // packing is enabled
let topMostNodes = aux.getTopMostNodes(options.eles.nodes());
components = aux.connectComponents(cy, options.eles, topMostNodes);
//send each component to spectral layout
if(options.randomize){
components.forEach(function(component){
options.eles = component;
spectralResult.push(spectralLayout(options));
});
}
if(options.quality == "default" || options.quality == "proof"){
if(options.quality == "default" || options.quality == "proof"){
let toBeTiledNodes = cy.collection();

@@ -150,13 +171,13 @@ if(options.tile){ // behave nodes to be tiled as one component

components.forEach(function(component, index){
if(component.edges().length == 0){
component.nodes().forEach(function(node, i){
toBeTiledNodes.merge(component.nodes()[i]);
if(!node.isParent()){
tempSpectralResult.nodeIndexes.set(component.nodes()[i].id(), count++);
tempSpectralResult.xCoords.push(component.nodes()[0].position().x);
tempSpectralResult.yCoords.push(component.nodes()[0].position().y);
}
});
indexesToBeDeleted.push(index);
}
if(component.edges().length == 0){
component.nodes().forEach(function(node, i){
toBeTiledNodes.merge(component.nodes()[i]);
if(!node.isParent()){
tempSpectralResult.nodeIndexes.set(component.nodes()[i].id(), count++);
tempSpectralResult.xCoords.push(component.nodes()[0].position().x);
tempSpectralResult.yCoords.push(component.nodes()[0].position().y);
}
});
indexesToBeDeleted.push(index);
}
});

@@ -176,82 +197,139 @@ if(toBeTiledNodes.length > 1){

});
}
// packing
let subgraphs = [];
components.forEach(function(component, index){
let nodeIndexes;
if(options.quality == "draft"){
nodeIndexes = spectralResult[index].nodeIndexes;
}
let subgraph = {};
subgraph.nodes = [];
subgraph.edges = [];
let nodeIndex;
component.nodes().forEach(function (node) {
if(options.quality == "draft"){
if(!node.isParent()){
nodeIndex = nodeIndexes.get(node.id());
subgraph.nodes.push({x: spectralResult[index].xCoords[nodeIndex] - node.boundingbox().w/2, y: spectralResult[index].yCoords[nodeIndex] - node.boundingbox().h/2, width: node.boundingbox().w, height: node.boundingbox().h});
}
// packing
if(components.length > 1){
let subgraphs = [];
components.forEach(function(component, index){
let nodeIndexes;
if(options.quality == "draft"){
nodeIndexes = spectralResult[index].nodeIndexes;
}
else{
let parentInfo = aux.calcBoundingBox(node, spectralResult[index].xCoords, spectralResult[index].yCoords, nodeIndexes);
subgraph.nodes.push({x: parentInfo.topLeftX, y: parentInfo.topLeftY, width: parentInfo.width, height: parentInfo.height});
}
}
else{
subgraph.nodes.push({x: coseResult[index][node.id()].getLeft(), y: coseResult[index][node.id()].getTop(), width: coseResult[index][node.id()].getWidth(), height: coseResult[index][node.id()].getHeight()});
}
});
component.edges().forEach(function (edge) {
let source = edge.source();
let target = edge.target();
let subgraph = {};
subgraph.nodes = [];
subgraph.edges = [];
let nodeIndex;
component.nodes().forEach(function (node) {
if(options.quality == "draft"){
if(!node.isParent()){
nodeIndex = nodeIndexes.get(node.id());
subgraph.nodes.push({x: spectralResult[index].xCoords[nodeIndex] - node.boundingbox().w/2, y: spectralResult[index].yCoords[nodeIndex] - node.boundingbox().h/2, width: node.boundingbox().w, height: node.boundingbox().h});
}
else{
let parentInfo = aux.calcBoundingBox(node, spectralResult[index].xCoords, spectralResult[index].yCoords, nodeIndexes);
subgraph.nodes.push({x: parentInfo.topLeftX, y: parentInfo.topLeftY, width: parentInfo.width, height: parentInfo.height});
}
}
else{
subgraph.nodes.push({x: coseResult[index][node.id()].getLeft(), y: coseResult[index][node.id()].getTop(), width: coseResult[index][node.id()].getWidth(), height: coseResult[index][node.id()].getHeight()});
}
});
component.edges().forEach(function (edge) {
let source = edge.source();
let target = edge.target();
if(options.quality == "draft"){
let sourceNodeIndex = nodeIndexes.get(source.id());
let targetNodeIndex = nodeIndexes.get(target.id());
let sourceCenter = [];
let targetCenter = [];
if(source.isParent()){
let parentInfo = aux.calcBoundingBox(source, spectralResult[index].xCoords, spectralResult[index].yCoords, nodeIndexes);
sourceCenter.push(parentInfo.topLeftX + parentInfo.width / 2);
sourceCenter.push(parentInfo.topLeftY + parentInfo.height / 2);
}
else{
sourceCenter.push(spectralResult[index].xCoords[sourceNodeIndex]);
sourceCenter.push(spectralResult[index].yCoords[sourceNodeIndex]);
}
if(target.isParent()){
let parentInfo = aux.calcBoundingBox(target, spectralResult[index].xCoords, spectralResult[index].yCoords, nodeIndexes);
targetCenter.push(parentInfo.topLeftX + parentInfo.width / 2);
targetCenter.push(parentInfo.topLeftY + parentInfo.height / 2);
}
else{
targetCenter.push(spectralResult[index].xCoords[targetNodeIndex]);
targetCenter.push(spectralResult[index].yCoords[targetNodeIndex]);
}
subgraph.edges.push({startX: sourceCenter[0], startY: sourceCenter[1], endX: targetCenter[0], endY: targetCenter[1]});
}
else{
subgraph.edges.push({startX: coseResult[index][source.id()].getCenterX(), startY: coseResult[index][source.id()].getCenterY(), endX: coseResult[index][target.id()].getCenterX(), endY: coseResult[index][target.id()].getCenterY()});
}
});
subgraphs.push(subgraph);
});
let shiftResult = layUtil.packComponents(subgraphs).shifts;
if(options.quality == "draft"){
let sourceNodeIndex = nodeIndexes.get(source.id());
let targetNodeIndex = nodeIndexes.get(target.id());
let sourceCenter = [];
let targetCenter = [];
if(source.isParent()){
let parentInfo = aux.calcBoundingBox(source, spectralResult[index].xCoords, spectralResult[index].yCoords, nodeIndexes);
sourceCenter.push(parentInfo.topLeftX + parentInfo.width / 2);
sourceCenter.push(parentInfo.topLeftY + parentInfo.height / 2);
}
else{
sourceCenter.push(spectralResult[index].xCoords[sourceNodeIndex]);
sourceCenter.push(spectralResult[index].yCoords[sourceNodeIndex]);
}
if(target.isParent()){
let parentInfo = aux.calcBoundingBox(target, spectralResult[index].xCoords, spectralResult[index].yCoords, nodeIndexes);
targetCenter.push(parentInfo.topLeftX + parentInfo.width / 2);
targetCenter.push(parentInfo.topLeftY + parentInfo.height / 2);
}
else{
targetCenter.push(spectralResult[index].xCoords[targetNodeIndex]);
targetCenter.push(spectralResult[index].yCoords[targetNodeIndex]);
}
subgraph.edges.push({startX: sourceCenter[0], startY: sourceCenter[1], endX: targetCenter[0], endY: targetCenter[1]});
spectralResult.forEach(function(result, index){
let newXCoords = result.xCoords.map(x => x + shiftResult[index].dx);
let newYCoords = result.yCoords.map(y => y + shiftResult[index].dy);
result.xCoords = newXCoords;
result.yCoords = newYCoords;
});
}
else{
subgraph.edges.push({startX: coseResult[index][source.id()].getCenterX(), startY: coseResult[index][source.id()].getCenterY(), endX: coseResult[index][target.id()].getCenterX(), endY: coseResult[index][target.id()].getCenterY()});
coseResult.forEach(function(result, index){
Object.keys(result).forEach(function (item) {
let nodeRectangle = result[item];
nodeRectangle.setCenter(nodeRectangle.getCenterX() + shiftResult[index].dx, nodeRectangle.getCenterY() + shiftResult[index].dy);
});
});
}
});
subgraphs.push(subgraph);
});
let shiftResult = layUtil.packComponents(subgraphs).shifts;
if(options.quality == "draft"){
spectralResult.forEach(function(result, index){
let newXCoords = result.xCoords.map(x => x + shiftResult[index].dx);
let newYCoords = result.yCoords.map(y => y + shiftResult[index].dy);
result.xCoords = newXCoords;
result.yCoords = newYCoords;
});
}
}
else{
coseResult.forEach(function(result, index){
Object.keys(result).forEach(function (item) {
let nodeRectangle = result[item];
nodeRectangle.setCenter(nodeRectangle.getCenterX() + shiftResult[index].dx, nodeRectangle.getCenterY() + shiftResult[index].dy);
// move graph to its original position because spectral moves it to origin
if(!options.fixedNodeConstraint) {
let minXCoord = Number.POSITIVE_INFINITY;
let maxXCoord = Number.NEGATIVE_INFINITY;
let minYCoord = Number.POSITIVE_INFINITY;
let maxYCoord = Number.NEGATIVE_INFINITY;
if(options.quality == "draft") {
spectralResult.forEach(function(result){
result.xCoords.forEach(function (value) {
if (value < minXCoord)
minXCoord = value;
if (value > maxXCoord)
maxXCoord = value;
});
result.yCoords.forEach(function (value) {
if (value < minYCoord)
minYCoord = value;
if (value > maxYCoord)
maxYCoord = value;
});
});
});
let boundingBox = options.eles.boundingBox();
let diffOnX = (boundingBox.x1 + boundingBox.w / 2) - (maxXCoord + minXCoord) / 2;
let diffOnY = (boundingBox.y1 + boundingBox.h / 2) - (maxYCoord + minYCoord) / 2;
spectralResult.forEach(function(result){
result.xCoords = result.xCoords.map(x => x + diffOnX);
result.yCoords = result.yCoords.map(y => y + diffOnY);
});
}
else {
coseResult.forEach(function(result){
Object.keys(result).forEach(function (item) {
let node = result[item];
if (node.getCenterX() < minXCoord)
minXCoord = node.getCenterX();
if (node.getCenterX() > maxXCoord)
maxXCoord = node.getCenterX();
if (node.getCenterY() < minYCoord)
minYCoord = node.getCenterY();
if (node.getCenterY() > maxYCoord)
maxYCoord = node.getCenterY();
});
});
let boundingBox = options.eles.boundingBox();
let diffOnX = (boundingBox.x1 + boundingBox.w / 2) - (maxXCoord + minXCoord) / 2;
let diffOnY = (boundingBox.y1 + boundingBox.h / 2) - (maxYCoord + minYCoord) / 2;
coseResult.forEach(function(result, index){
Object.keys(result).forEach(function (item) {
let node = result[item];
node.setCenter(node.getCenterX() + diffOnX, node.getCenterY() + diffOnY);
});
});
}
}
}

@@ -302,3 +380,3 @@

console.log("If randomize option is set to false, then quality option must be 'default' or 'proof'.");
}
}

@@ -305,0 +383,0 @@ }

@@ -6,2 +6,4 @@ /**

const aux = require('./auxiliary');
const Matrix = require('cose-base').layoutBase.Matrix;
const SVD = require('cose-base').layoutBase.SVD;

@@ -170,3 +172,3 @@ // main function that spectral layout is processed

let SVDResult = aux.svd(PHI);
let SVDResult = SVD.svd(PHI);

@@ -192,3 +194,3 @@ let a_q = SVDResult.S;

INV = aux.multMat(aux.multMat(a_v, a_Sig), aux.transpose(a_u));
INV = Matrix.multMat(Matrix.multMat(a_v, a_Sig), Matrix.transpose(a_u));

@@ -215,4 +217,4 @@ };

Y1 = aux.normalize(Y1);
Y2 = aux.normalize(Y2);
Y1 = Matrix.normalize(Y1);
Y2 = Matrix.normalize(Y2);

@@ -233,7 +235,7 @@ let count = 0;

Y1 = aux.multGamma(aux.multL(aux.multGamma(V1), C, INV));
theta1 = aux.dotProduct(V1, Y1);
Y1 = aux.normalize(Y1);
Y1 = Matrix.multGamma(Matrix.multL(Matrix.multGamma(V1), C, INV));
theta1 = Matrix.dotProduct(V1, Y1);
Y1 = Matrix.normalize(Y1);
current = aux.dotProduct(V1, Y1);
current = Matrix.dotProduct(V1, Y1);

@@ -262,8 +264,8 @@ temp = Math.abs(current/previous);

V2 = aux.minusOp(V2, aux.multCons(V1, (aux.dotProduct(V1, V2))));
Y2 = aux.multGamma(aux.multL(aux.multGamma(V2), C, INV));
theta2 = aux.dotProduct(V2, Y2);
Y2 = aux.normalize(Y2);
V2 = Matrix.minusOp(V2, Matrix.multCons(V1, (Matrix.dotProduct(V1, V2))));
Y2 = Matrix.multGamma(Matrix.multL(Matrix.multGamma(V2), C, INV));
theta2 = Matrix.dotProduct(V2, Y2);
Y2 = Matrix.normalize(Y2);
current = aux.dotProduct(V2, Y2);
current = Matrix.dotProduct(V2, Y2);

@@ -289,4 +291,4 @@ temp = Math.abs(current/previous);

//populate the two vectors
xCoords = aux.multCons(V1, Math.sqrt(Math.abs(theta1)));
yCoords = aux.multCons(V2, Math.sqrt(Math.abs(theta2)));
xCoords = Matrix.multCons(V1, Math.sqrt(Math.abs(theta1)));
yCoords = Matrix.multCons(V2, Math.sqrt(Math.abs(theta2)));

@@ -353,3 +355,3 @@ };

ele.neighborhood().nodes().forEach(function(node){
if(eles.intersection(ele.edgesWith(node))){
if(eles.intersection(ele.edgesWith(node)).length > 0){
if(node.isParent())

@@ -399,7 +401,16 @@ allNodesNeighborhood[eleIndex].push(parentChildMap.get(node.id()));

allBFS(samplingType);
sample();
powerIteration();
if(options.quality == "draft" || options.step == "all"){
allBFS(samplingType);
sample();
powerIteration();
spectralResult = { nodeIndexes: nodeIndexes, xCoords: xCoords, yCoords: yCoords };
spectralResult = { nodeIndexes: nodeIndexes, xCoords: xCoords, yCoords: yCoords };
}
else{
nodeIndexes.forEach(function(value, key){
xCoords.push(cy.getElementById(key).position("x"));
yCoords.push(cy.getElementById(key).position("y"));
});
spectralResult = { nodeIndexes: nodeIndexes, xCoords: xCoords, yCoords: yCoords };
}
return spectralResult;

@@ -406,0 +417,0 @@ }

Sorry, the diff of this file is too big to display

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc