Embeddings NPM Package
The embeddings
package is a utility for generating question-answer pairs and embeddings from HTML pages or text input. It utilizes the OpenAI API to generate question-answer pairs and embeddings. This package is useful for generating training data for chatbots or question-answering models.
Constructor Options
The Embeddings
class can be instantiated with the following options:
apiKey
(required): Your OpenAI API key.embeddingModel
(optional, default: "text-embedding-ada-002"): The name of the OpenAI model to use for generating embeddings.completionModel
(optional, default: "text-davinci-003"): The name of the OpenAI model to use for generating question-answer pairs.completionModelOptions
(optional, default: { max_tokens: 2000, n: 1, stop: null, temperature: 0.7 }
): The options to pass to the completion model when generating question-answer pairs.screenshotApiKey
(optional): Your Pagepixels Screenshot API key (https://pagepixels.com), used for scraping HTML from webpages.screenshotOptions
(optional, default: {}
): The options to pass to the Pagepixels Screenshot API when scraping HTML.chunkMaxTokens
(optional, default: 800): The maximum number of tokens to send to the OpenAI API at once.promptRefinement
(optional, default: ""): Any prompt refinement you would like to add to the completion prompt.verbose
(optional, default: false): Whether or not to output additional logging information during processing.
Usage
The Embeddings
class provides several methods for generating embeddings and question-answer pairs. These methods can be used standalone or in combination to generate embeddings and question-answer pairs from HTML pages or text input.
generateQaEmbeddingsFromText
Method
The generateQaEmbeddingsFromText
method takes a string of text and generates embeddings and question-answer pairs from it. The method returns an array of objects, each containing the original question-answer pair along with the corresponding embedding.
const Embeddings = require('embeddings');
const options = {
apiKey: 'your_api_key',
verbose: true
}
const embeddingsClient = new Embeddings(options);
const text = `Welcome to our documentation. This guide will walk you through the basics of using our platform.`;
const embeddingsResult = await embeddingsClient.generateQaEmbeddingsFromText(text);
console.log(embeddingsResult);
generateQaEmbeddingsFromUrls
Method
The generateQaEmbeddingsFromUrls
method takes an array of URLs and generates embeddings and question-answer pairs from the text content of the pages at those URLs. The method takes screenshots of the web pages using the Pagepixels API and extracts the text content from the resulting HTML. The method returns an array of objects, each containing the original question-answer pair along with the corresponding embedding and the URL of the page from which it was generated.
const Embeddings = require('embeddings');
const options = {
apiKey: 'your_api_key',
screenshotApiKey: 'your_screenshot_api_key',
verbose: true
}
const embeddingsClient = new Embeddings(options);
const urls = ['https://www.example.com', 'https://www.example.com/about'];
const embeddingsResult = await embeddingsClient.generateQaEmbeddingsFromUrls(urls);
console.log(embeddingsResult);
generateQaEmbeddingsFromQaPairs
Method
The generateQaEmbeddingsFromQaPairs
method takes an array of question-answer pairs and generates embeddings for the questions. The method returns an array of objects, each containing the original question-answer pair along with the corresponding embedding.
const Embeddings = require('embeddings');
const options = {
apiKey: 'your_api_key',
verbose: true
}
const embeddingsClient = new Embeddings(options);
const qaPairs = [
{
question: "What is the purpose of this documentation?",
answer: "To guide users through the basics of using the platform."
}
];
const embeddingsResult = await embeddingsClient.generateQaEmbeddingsFromQaPairs(qaPairs);
console.log(embeddingsResult);
generateQaPairsFromText
Method
The generateQaPairsFromText
method takes a string of text and generates question-answer pairs from it. The method returns an array of objects, each containing the question and the answer.
const Embeddings = require('embeddings');
const options = {
apiKey: 'your_api_key',
verbose: true
}
const embeddingsClient = new Embeddings(options);
const text = `Welcome to our documentation. This guide will walk you through the basics of using our platform.`;
const qaPairs = await embeddingsClient.generateQaPairsFromText(text);
console.log(qaPairs);
generateEmbeddingForText
Method
The generateEmbeddingForText
method takes a string of text and generates an embedding for it. The method returns the generated embedding.
const Embeddings = require('embeddings');
const options = {
apiKey: 'your_api_key',
verbose: true
}
const embeddingsClient = new Embeddings(options);
const text = "What is the purpose of this documentation?";
const embedding = await embeddingsClient.generateEmbeddingForText(text);
console.log(embedding);
Conclusion
The embeddings
package provides a convenient way to generate question-answer pairs and embeddings from HTML pages or text input using the OpenAI API. By using the methods provided by the package, it is easy to generate training data for chatbots or question-answering models. The available constructor options provide flexibility for customizing the behavior of the package.