Security News
GitHub Removes Malicious Pull Requests Targeting Open Source Repositories
GitHub removed 27 malicious pull requests attempting to inject harmful code across multiple open source repositories, in another round of low-effort attacks.
Fetch API implementation for Node.js using the built-in http
, https
and http2
packages without any compatibility layer.
fetch-h2
handles HTTP/1(.1) and HTTP/2 connections transparently since 2.0. By default (although configurable) a url to http://
uses HTTP/1(.1) and for the very uncommon plain-text HTTP/2 (called h2c), http2://
can be provided. The library supports ALPN negotation, so https://
will use either HTTP/1(.1) or HTTP/2 depending on what the server supports. By default, HTTP/2 is preferred.
The library handles sessions transparently and re-uses sockets when possible.
fetch-h2
tries to adhere to the Fetch API very closely, but extends it slightly to fit better into Node.js (e.g. using streams).
Regardless of whether you're actually interested in the Fetch API per se or not, as long as you want to handle HTTP/2 client requests in Node.js, this module is a lot easier and more natural to use than the native built-in http2
module which is low-level in comparison.
fetch-h2
supports cookies (per-context, see below), so when the server sends 'set-cookie' headers, they are saved and automatically re-sent, even after disconnect. They are however only persisted in-memory.
By default, fetch-h2
will accept gzip
and deflate
encodings (and Brolti br
if running on Node.js 11.7 or later), and decode transparently. If you want to allow Brotli for older versions node Node.js, use the fetch-h2-br
package.
Since 1.0.0, fetch-h2
requires Node.js 10.
Since 2.0.0, fetch-h2
requires Node.js 10.4.
Since 2.4.0, fetch-h2
has full TLS SAN (Subject Alternative Name) support.
This README uses the ES6/TypeScript import
syntax, mainly because fetch-h2
is written in TypeScript (and also because ES6 modules will eventually arrive in Node.js). If you use pure JavaScript in Node.js today, you don't have modules support, just require
instead, e.g:
const { fetch } = require( 'fetch-h2' );
fetch-h2
exports more than just fetch()
, namely all necessary classes and functions for taking advantage of the Fetch API (and more).
import {
setup,
context,
fetch,
disconnect,
disconnectAll,
onPush,
Body,
Headers,
Request,
Response,
AbortError,
AbortController,
TimeoutError,
ContextOptions,
DecodeFunction,
Decoder,
CookieJar,
// TypeScript types:
OnTrailers,
} from 'fetch-h2'
Apart from the obvious fetch
, the functions setup
, context
, disconnect
, disconnectAll
and onPush
are described below, and the classes Body
, Headers
, Request
and Response
are part of the Fetch API.
AbortError
is the error thrown in case of an abort signal (this is also the error thrown in case of a timeout, which in fetch-h2
is internally implemented as an abort signal) and the AbortController
provides a way to abort requests.
TimeoutError
is thrown if the request times out.
The ContextOptions
, DecodeFunction
and Decoder
types are described below.
The CookieJar
class can be used to control cookie handling (e.g. to read the cookies manually).
The OnTrailers
is the type for the onTrailers
callback.
Import fetch
from fetch-h2
and use it like you would use fetch
in the browser.
import { fetch } from 'fetch-h2'
const response = await fetch( url );
const responseText = await response.text( );
With HTTP/2, all requests to the same origin (domain name and port) share a single session (socket). In browsers, it is eventually disconnected, maybe. It's up to the implementation to handle disconnections. In fetch-h2
, you can disconnect it manually, which is great e.g. when using fetch-h2
in unit tests.
Disconnect the session for a certain url (the session for the origin will be disconnected) using disconnect
, and disconnect all sessions with disconnectAll
. Read more on contexts below to understand what "all" really means...
import { disconnect, disconnectAll } from 'fetch-h2'
await disconnect( "http://mysite.com/foo" ); // "/foo" is ignored, but allowed
// or
await disconnectAll( );
When the server pushes a request, this can be handled using the onPush
handler. Registering an onPush
handler is, just like the disconnection functions, per-context.
import { onPush } from 'fetch-h2'
onPush( async ( origin, request, getResponse ) =>
{
if ( shouldReceivePush( request ) )
{
const response = await getResponse( );
// do something with response...
}
} );
To unset the push handler (and ignore future pushes) when it has been set to a function previously, call onPush
without any arguments.
import { onPush } from 'fetch-h2'
onPush( push_fun );
// ... later
onPush( ); // Reset push handling to ignore pushes from now
fetch-h2
has a few limitations, some purely technical, some more fundamental or perhaps philosophical, which you will find in the Fetch API but missing here.
fetch-h2
believes.Body
class/mixin doesn't support the formData()
function. This can be added if someone really wants it - PR's are welcome.Body
class/mixin doesn't support the blob()
function. This type of buffer doesn't exist in Node.js, use arrayBuffer()
instead.HEAD
and GET
requests. If e.g. a POST
request gets a 3xx-code response and redirect
is set to follow
, the result is an error. Redirections for non-idempotent requests are only allowed if redirect
is error
or manual
(which is the default). Note that the default for redirect
is different among browsers (and even versions of them). The specs are non-obvious but seems to suggest manual
initially, followed by follow
. It's a good idea to explicitly set redirect
and not depend on any default.credentials
option is currently not used. Cookies are always sent to the same origin, and not to others.cache
option is unused, as fetch-h2
has no built-in cache.referrer
and referrerPolicy
are unused, as fetch-h2
operates outside the concept of "web pages".integrity
option is actually implemented and validates unless the result body is read through the Node.js ReadableStream
(using response.readable( )
). The body is validated if arrayBuffer( )
, json( )
or text( )
is used to read the body, in which case these functions will return a rejected promise if the validation fails.These are features in fetch-h2
, that don't exist in the Fetch API. Some things are just very useful in a Node.js environment (like streams), some are due to the lack of a browser with all its responsibilities.
redirect
is set to manual
, the response is supposed to be empty and useless, with no status code or anything (according to spec). In fetch-h2
, it's a normal useful Response
object.body
that can be sent in a Request, and that is available on the Response, can be a Node.js ReadableStream
. You can thereby stream data with a request, and stream the response body.body
that can be sent in a Request can be a Body
object. It can also be a string or buffer.fetch()
has an extra option, json
that can be used instead of body
to send an object that will be JSON stringified. The appropriate content-type
will be set if it isn't already.fetch()
has an extra option, timeout
which is a timeout in milliseconds before the request should be aborted and the returned promise thereby rejected (with a TimeoutError
).fetch()
has an extra option, onTrailers
(of the type OnTrailers
) which is a callback that will receive trailing headers.Request.clone()
member function has an optional url
argument for the cloned Request
.text()
and arrayBuffer()
has an optional argument allowIncomplete
which defaults to false
. If set to true
these function will return incomplete bodies, i.e. "as much as was read" before the stream was prematurely closed (disconnected). If integrity checks are enabled, the functions will throw anyway if the body is incomplete.Request
class (options to fetch
) has an extra property allowForbiddenHeaders
, which defaults to false
.Response
class also has an extra property allowForbiddenHeaders
, which defaults to false
(or to the value of the Request
if it was constructed through a fetch
call, which is the common case).httpVersion
which is either 1
or 2
(numbers), depending on what was negotiated with the server.Headers
class (e.g. retried by {response}.headers
) has a toJSON
function which converts the headers to a simple JavaScript object.HTTP/2 expects a client implementation to not create new sockets (sessions) for every request, but instead re-use them - create new requests in the same session. This is also totally transparent in the Fetch API. It might be useful to control this, and create new "browser contexts", each with their own set of HTTP/2-sessions-per-origin. This is done through the context
function.
This function returns an object which looks like the global fetch-h2
API, i.e. it will have the functions fetch
, disconnect
and disconnectAll
.
import { context } from 'fetch-h2'
const ctx = context( /* options */ );
ctx.fetch( url | Request, init?: InitOpts );
ctx.disconnect( url );
ctx.disconnectAll( );
ctx.onPush( ... );
The global fetch
, disconnect
, disconnectAll
and onPush
functions are default-created from a context internally. They will therefore not interfere, and disconnect
/disconnectAll
/onPush
only applies to its own context, be it a context created by you, or the default one from fetch-h2
.
If you want one specific context in a file, why not destructure the return in one go?
import { context } from 'fetch-h2'
const { fetch, disconnect, disconnectAll, onPush } = context( );
Contexts can be configured with options when constructed. The default context can be configured using the setup( )
function, but if this function is used, call it only once, and before any usage of fetch-h2
, or the result is undefined.
The options to setup( )
are the same as those to context( )
and is available as a TypeScript type ContextOptions
.
// The options object
interface ContextOptions
{
userAgent:
string |
PerOrigin< string >;
overwriteUserAgent:
boolean |
PerOrigin< boolean >;
accept:
string |
PerOrigin< string >;
cookieJar:
CookieJar;
decoders:
ReadonlyArray< Decoder > |
PerOrigin< ReadonlyArray< Decoder > >;
session:
SecureClientSessionOptions |
PerOrigin< SecureClientSessionOptions >;
httpProtocol:
HttpProtocols |
PerOrigin< HttpProtocols >;
httpsProtocols:
ReadonlyArray< HttpProtocols > |
PerOrigin< ReadonlyArray< HttpProtocols > >;
http1:
Partial< Http1Options > |
PerOrigin< Partial< Http1Options > >;
}
where Http1Options
is
interface Http1Options
{
keepAlive: boolean | PerOrigin< boolean >;
keepAliveMsecs: number | PerOrigin< number >;
maxSockets: number | PerOrigin< number >;
maxFreeSockets: number | PerOrigin< number >;
timeout: void | number | PerOrigin< void | number >;
}
Any of these options, except for the cookie jar, can be provided either as a value or as a callback function (PerOrigin
) which takes the origin as argument and returns the value. A void
return from that function, will use the built-in default.
By specifying a userAgent
string, this will be added to the built-in user-agent
header. If defined, and overwriteUserAgent
is true, the built-in user agent string will not be sent.
accept
can be specified, which is the accept
header. The default is:
application/json, text/*;0.9, */*;q=0.8
cookieJar
can be set to a custom cookie jar, constructed as new CookieJar( )
. CookieJar
is a class exported by fetch-h2
and has three functions:
{
setCookie( cookie: string | Cookie, url: string ): Promise< Cookie >;
setCookies( cookies: ReadonlyArray< string | Cookie >, url: string ): Promise< Cookie >;
getCookies( url: string ): Promise< ReadonlyArray< Cookie > >;
reset( ); // Clears all cookies
}
where Cookie
is a tough-cookie
Cookie.
By default, gzip
and deflate
are supported, and br
(Brotli) if running on Node.js 11.7+.
decoders
can be an array of custom decoders, such as fetch-h2-br
which adds Brotli content decoding support for older versions of node (< 11.7).
session
can be used for lower-level Node.js settings. This is the options to http2::connect
(including the net::connect
and tls::connect
options). Use this option to specify {rejectUnauthorized: false}
if you want to allow unauthorized (e.g. self-signed) certificates.
Some of these fields are compatible with HTTP/1.1 too, such as rejectUnauthorized
.
The type HttpProtocols
is "http1" | "http2"
.
The option httpProtocol
can be set to either "http2"
or "http1"
(the default). This controls what links to http://
will use. Note that no web server will likely support HTTP/2 unencrypted.
httpsProtocol
is an array of supported protocols to negotiate over https. It defaults to [ "http2", "http1" ]
, but can be swapped to prefer HTTP/1(.1) rather than HTTP/2, or to require one of them by only containing that protocol.
HTTP/2 allows for multiple concurrent streams (requests) over the same session (socket). HTTP/1 has no such feature, so commonly, clients open a set of connections and re-use them to allow for concurrency.
The http1
options object can be used to configure this.
http1.keepAlive
defaults to true, to allow connections to linger so that they can be reused. The http1.keepAliveMsecs
time (defaults to 1000ms, i.e. 1s) specifies the delay before keep-alive probing.
http1.maxSockets
defines the maximum sockets to allow per origin, and http1.maxFreeSockets
the maximum number of lingering sockets, waiting to be re-used for new requests.
http1.timeout
defines the HTTP/1 timeout.
When an error is thrown (or a promise is rejected), fetch-h2
will always provide proper error objects, i.e. instances of Error
.
If servers are redirecting a fetch operation in a way that causes a circular redirection, e.g. servers redirect A -> B -> C -> D -> B
, fetch-h2
will detect this and fail the operation with an error. The error object will have a property urls
which is an array of the urls that caused the loop (in this example it would be [ B, C, D ]
, as D
would redirect to the head of this list again).
Using await
and the Body.json()
function we can easily get a JSON object from a response.
import { fetch } from 'fetch-h2'
const jsonData = await ( await fetch( url ) ).json( );
Use the json
property instead of body
to send an application/json
body. This is an extension in fetch-h2
, not existing in the Fetch API.
import { fetch } from 'fetch-h2'
const method = 'POST';
const json = { foo: 'bar' };
const response = await fetch( url, { method, json } );
Similarly to posting JSON, posting a buffer, string or readable stream can be done through the body
property.
import * as fs from 'fs'
import { fetch } from 'fetch-h2'
const method = 'POST';
const body = "some data";
const response = await fetch( url, { method, body } );
// or
const body = fs.readFileSync( 'my-file' );
const response = await fetch( url, { method, body } );
// or
const body = fs.createReadStream( 'my-file' );
const response = await fetch( url, { method, body } );
FAQs
HTTP/1+2 Fetch API client for Node.js
The npm package fetch-h2 receives a total of 71,764 weekly downloads. As such, fetch-h2 popularity was classified as popular.
We found that fetch-h2 demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
GitHub removed 27 malicious pull requests attempting to inject harmful code across multiple open source repositories, in another round of low-effort attacks.
Security News
RubyGems.org has added a new "maintainer" role that allows for publishing new versions of gems. This new permission type is aimed at improving security for gem owners and the service overall.
Security News
Node.js will be enforcing stricter semver-major PR policies a month before major releases to enhance stability and ensure reliable release candidates.