Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

fluent-data

Package Overview
Dependencies
Maintainers
1
Versions
16
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

fluent-data

Work with tables and matricies in fluent fashion within javascript.

  • 5.1.1
  • latest
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

See the Video Series Here

Summary

This library allows you to work with data structured as a table or as a matrix and provides you with many of the methods you would expect when working with such things. It also provides various convenience and statistical functions.

A dataset represents a collection of object-rows. Among other capacities, here you have the ability to map, filter, sort, group, reduce, and join. These methods can seem similar to those found on Array. However, they are designed to work with objects as rows. Furthermore, some SQL-like capacity (e.g. left join, exists) and deeper statistics (e.g. multiple regression) are available that you just cannot get in vanilla javacript.

A matrix is a rectangular collection of numbers on which particular mathematical operations are defined. This library offers many of the expected operations of matrix algebra. This includes matrix multiplication, addition, various methods of 'apply' functionality, varous decompositions, pseudoinvering, and production of eigen values and vectors.

Click on the links below to see more information in each area:

Getting Started

To install:

npm install fluent-data

To import:

// client
import $$ from './node_modules/fluent-data/dist/fluent-data.client.js';

// server
let $$ = require('fluent-data');

// but the examples in this documentation will use
let $$ = require('./dist/fluent-data.server.js');

Dataset Example:

Consider the following arrays:

let customers = [
    { id: 1, name: 'Alice' },
    { id: 2, name: 'Benny' } 
];

let purchases = [
    { customer: 2, speed: 15, rating: 50, storeId: 1 },
    { customer: 1, speed: 5, rating: 90, storeId: 1 },
    { customer: 1, speed: 7, rating: 55, storeId: 1 },
    { customer: 2, speed: 6, rating: 88, storeId: 1 },
    { customer: 1, speed: 25, rating: 35, storeId: 1 },
    { customer: 1, speed: 40, rating: 2, storeId: 3, closed: true },
    { customer: 2, speed: 4, rating: 88, storeId: 1 },
    { customer: 1, speed: 1, rating: 96, storeId: 2 },
    { customer: 1, speed: 2, rating: 94, storeId: 2 },
    { customer: 1, speed: 1, rating: 94, storeId: 2 }
];

The following example converts the to dataset and uses many of the methods available.

let $$ = require('./dist/fluent-data.server.js');

$$(purchases)
    .filter(p => !p.closed)
    .joinLeft(customers, (p,c) => p.customer == c.id) 
    .group(p => [p.customer, p.storeId]) 
    .reduce({
        customer: $$.first(p => p.name),
        store: $$.first(p => p.storeId),
        orders: $$.count(p => p.id), 
        speed: $$.avg(p => p.speed),
        rating: $$.avg(p => p.rating),
        correlation: $$.cor(p => [p.speed, p.rating]) 
        // other reducers, such as multiple regression, are built in!
    })
    .sort(p => [p.customer, -p.rating]) 
    .log(null, 'purchases:', 
        p => $$.round({ ...p, orders: undefined}, 1e-3)
    );

// use 'get' as opposed to 'log' to assign to a variable

This results in three rows for analysis:

purchases:
┌──────────┬───────┬────────┬────────┬─────────────┐
│ customer │ store │ speed  │ rating │ correlation │
├──────────┼───────┼────────┼────────┼─────────────┤
│ Alice    │ 2     │ 1.333  │ 94.667 │ -0.5        │
│ Alice    │ 1     │ 12.333 │ 60     │ -0.832      │
│ Benny    │ 1     │ 8.333  │ 75.333 │ -0.985      │
└──────────┴───────┴────────┴────────┴─────────────┘

Matrix Example:

Consider the following arrays, converted to matricies:

let $$ = require('./dist/fluent-data.server.js');

let community = $$([
    { marker: 'Applewood Park', x: 0, y: 0 },
    { marker: 'Orangewood School', x: 10, y: 0},
    { marker: 'Kiwitown Market', x: 1, y: 10 },
    { marker: `The Millers`, x: -5, y: 0 },
    { marker: 'The Romeros', x: 0, y: -5 },
    { marker: 'The Lees', x: 5, y: 5 },
    { marker: 'The Keitas', x: 5, y: 0 },
    { marker: 'The Lebedevs', x: 15, y: 5 }
]).matrix('x, y', 'marker');

let transformer = new $$.matrix([
    [ 1, 0.4 ],
    [ 0, Math.pow(3,0.5) / 2 ]
]);

The following exmaple transforms the community data so that the new positions of the park, school, and market form an equilateral triangle. Then it analyzes the eigen properties of the transformer matrix.

let eigen = transformer.eigen();

community
    .transform(transformer)
    .log(null, 'Equilateralized Community:', 1e-8);

console.log('\nTransformer Eigenvalues:', eigen.values);
    
eigen.vectors.log(null, '\nTransformer Eigenvectors:', 1e-8); 
Equilateralized Community:
┌───────────────────┬────┬─────────────┐
│                   │ x  │ y           │
├───────────────────┼────┼─────────────┤
│ Applewood Park    │ 0  │ 0           │
│ Orangewood School │ 10 │ 0           │
│ Kiwitown Market   │ 5  │ 8.66025404  │
│ The Millers       │ -5 │ 0           │
│ The Romeros       │ -2 │ -4.33012702 │
│ The Lees          │ 7  │ 4.33012702  │
│ The Keitas        │ 5  │ 0           │
│ The Lebedevs      │ 17 │ 4.33012702  │
└───────────────────┴────┴─────────────┘

Transformer Eigenvalues: [ 1, 0.8660254 ]

Transformer Eigenvectors:
┌────┬────┬─────────────┐
│    │ c0 │ c1          │
├────┼────┼─────────────┤
│ r0 │ 1  │ -0.94822626 │
│ r1 │ 0  │ 0.31759558  │
└────┴────┴─────────────┘

Keywords

FAQs

Package last updated on 22 Apr 2022

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc