What is fs-tree-diff?
The fs-tree-diff npm package is used to efficiently compare and manage differences between two file system trees. It is particularly useful for tasks that involve synchronizing directories, detecting changes, and applying updates based on those changes.
What are fs-tree-diff's main functionalities?
Compare two directories
This feature allows you to compare two directories and generate a patch that represents the differences between them. The code sample demonstrates how to create two file system trees and calculate the patch.
const FSTree = require('fs-tree-diff');
const entriesA = FSTree.fromEntries([{ relativePath: 'file1.txt', mode: 0o100644, size: 123, mtime: new Date() }]);
const entriesB = FSTree.fromEntries([{ relativePath: 'file2.txt', mode: 0o100644, size: 456, mtime: new Date() }]);
const treeA = new FSTree({ entries: entriesA });
const treeB = new FSTree({ entries: entriesB });
const patch = treeA.calculatePatch(treeB);
console.log(patch);
Apply a patch to a directory
This feature allows you to apply a patch to a directory, effectively synchronizing it with another directory. The code sample demonstrates how to calculate a patch and then apply it to a file system tree.
const FSTree = require('fs-tree-diff');
const entriesA = FSTree.fromEntries([{ relativePath: 'file1.txt', mode: 0o100644, size: 123, mtime: new Date() }]);
const entriesB = FSTree.fromEntries([{ relativePath: 'file2.txt', mode: 0o100644, size: 456, mtime: new Date() }]);
const treeA = new FSTree({ entries: entriesA });
const treeB = new FSTree({ entries: entriesB });
const patch = treeA.calculatePatch(treeB);
FSTree.applyPatch(treeA, patch);
console.log(treeA.entries);
Generate entries from a directory
This feature allows you to generate entries from a directory, which can then be used to create a file system tree. The code sample demonstrates how to read a directory and generate entries for each file.
const FSTree = require('fs-tree-diff');
const fs = require('fs');
const path = require('path');
function generateEntries(dir) {
const entries = [];
fs.readdirSync(dir).forEach(file => {
const filePath = path.join(dir, file);
const stats = fs.statSync(filePath);
entries.push({ relativePath: file, mode: stats.mode, size: stats.size, mtime: stats.mtime });
});
return entries;
}
const entries = generateEntries('./my-directory');
console.log(entries);
Other packages similar to fs-tree-diff
diff
The 'diff' package provides a way to compare text differences between two strings or files. While it focuses on text comparison, fs-tree-diff is more specialized in comparing file system trees and managing directory synchronization.
rsync
The 'rsync' package is a utility for efficiently transferring and synchronizing files across computer systems. It is more comprehensive and includes network transfer capabilities, whereas fs-tree-diff is focused on local file system tree comparisons.
chokidar
The 'chokidar' package is a file watcher that tracks changes in the file system and triggers events. While it can detect changes, it does not provide the same level of detailed comparison and patching capabilities as fs-tree-diff.
fs-tree-diff
FSTree provides the means to calculate a patch (set of operations) between one file system tree and another.
The possible operations are:
unlink
– remove the specified filermdir
– remove the specified foldermkdir
– create the specified foldercreate
– create the specified filechange
– update the specified file to reflect changes
The operations chosen aim to minimize the amount of IO required to apply a given patch.
For example, a naive rm -rf
of a directory tree is actually quite costly, as child directories
must be recursively traversed, entries stated.. etc, all to figure out what first must be deleted.
Since we patch from tree to tree, discovering new files is both wasteful and un-needed.
The operations will also be provided in a correct order, allowing us to safely
replay operations without having to first confirm the FS is as we expect. For
example, unlink
s for files will occur before a rmdir
of those files' parent
dir. Although the ordering will be safe, a specific order is not guaranteed.
A simple example:
var FSTree = require('fs-tree-diff');
var current = FSTree.fromPaths([
'a.js'
]);
var next = FSTree.fromPaths([
'b.js'
]);
current.calculatePatch(next) === [
['unlink', 'a.js'],
['create', 'b.js']
];
A slightly more complicated example:
var FSTree = require('fs-tree-diff');
var current = FSTree.fromPaths([
'a.js',
'b/',
'b/f.js'
]);
var next = FSTree.fromPaths([
'b.js',
'b/',
'b/c/',
'b/c/d.js',
'b/e.js'
]);
current.calculatePatch(next) === [
['unlink', 'a.js', entryA],
['create', 'b.js', entryB],
['mkdir', 'b/c', entryBC],
['create', 'b/c/d.js', entryBCD],
['create', 'b/e.js', entryBE]
['unlink', 'b/f.js', entryBF],
]
Now, the above examples do not demonstrate update
operations. This is because
when providing only paths, we do not have sufficient information to check if
one entry is merely different from another with the same relativePath.
For this, FSTree supports more complex input structure. To demonstrate, We will
use the walk-sync module. Which
provides higher fidelity input, allowing FSTree to also detect changes. More on
what an entry from walkSync.entries
is
var walkSync = require('walk-sync');
var current = new FSTree({
entries: walkSync.entries('path/to/root')
});
writeFileSync('path/to/root/foo.js', 'new content');
writeFileSync('path/to/root/baz.js', 'new file');
var next = new FSTree({
entries: walkSync.entries('path/to/root')
});
current.calculatePatch(next) === [
['update', 'foo.js', entryFoo],
['create', 'baz.js', entryBaz]
];
The entry objects provided depend on the operation. For rmdir
and unlink
operations, the current entry is provided. For mkdir
, change
and create
operations the new entry is provided.
API
The public API is:
-
FSTree.fromPaths
initialize a tree from an array of string paths.
-
FSTree.fromEntries
initialize a tree from an object containing an entries
property. Each entry must have the following properties (but may have more):
relativePath
mode
size
mtime
-
FSTree.prototype.calculatePatch(newTree, isEqual)
calculate a patch against
newTree
. Optionally specify a custom isEqual
(see Change Calculation).
Input
FSTree.fromPaths
and FSTree.fromEntries
both validate their inputs. Inputs
must be sorted, path-unique (ie two entries with the same relativePath
but
different size
s would still be illegal input) and include intermediate
directories.
For example, the following input is invaild
FSTree.fromPaths([
'a/b/c.js'
]);
To have FSTree sort and expand (include intermediate directories) for you, add
the option sortAndExpand
).
FStree.fromPaths([
'a/b/q/r/bar.js',
'a/b/c/d/foo.js',
], { sortAndExpand: true });
FSTree.fromPaths([
'a/',
'a/b/',
'a/b/c/',
'a/b/c/d/',
'a/b/c/d/foo.js',
'a/b/q/',
'a/b/q/r/',
'a/b/q/r/bar.js',
]);
Entry
FSTree.fromEntries
requires you to supply your own Entry
objects. Your
entry objects must contain the following properties:
relativePath
mode
size
mtime
They must also implement the following API:
isDirectory()
true
iff this entry is a directory
Change Calculation
When a prior entry has a relativePath
that matches that of a current entry, a
change operation is included if the new entry is different from the previous
entry. This is determined by calling isEqual
, the optional second argument
to calculatePatch
. If no isEqual
is provided, a default isEqual
is used.
The default isEqual
treats directories as always equal and files as different
if any of the following properties have changed.
User specified isEqual
will often want to use the default isEqual
, so it is exported on FSTree
.
Example
var defaultIsEqual = FSTtreeDiff.isEqual;
function isEqualCheckingMeta(a, b) {
return defaultIsEqual(a, b) && isMetaEqual(a, b);
}
function isMetaEqual(a, b) {
}