Security News
PyPI Introduces Digital Attestations to Strengthen Python Package Security
PyPI now supports digital attestations, enhancing security and trust by allowing package maintainers to verify the authenticity of Python packages.
heap-typed
Advanced tools
This is a standalone Heap data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete data-structure-typed package
npm i heap-typed --save
yarn add heap-typed
Min Heap Max Heap
import {MinHeap, MaxHeap} from 'data-structure-typed';
// /* or if you prefer */ import {MinHeap, MaxHeap} from 'heap-typed';
const minNumHeap = new MinHeap<number>();
minNumHeap.add(1).add(6).add(2).add(0).add(5).add(9);
minNumHeap.has(1) // true
minNumHeap.has(2) // true
minNumHeap.poll() // 0
minNumHeap.poll() // 1
minNumHeap.peek() // 2
minNumHeap.has(1); // false
minNumHeap.has(2); // true
const arrFromHeap = minNumHeap.toArray();
arrFromHeap.length // 4
arrFromHeap[0] // 2
arrFromHeap[1] // 5
arrFromHeap[2] // 9
arrFromHeap[3] // 6
minNumHeap.sort() // [2, 5, 6, 9]
const maxHeap = new MaxHeap<{ keyA: string }>();
const myObj1 = {keyA: 'a1'}, myObj6 = {keyA: 'a6'}, myObj5 = {keyA: 'a5'}, myObj2 = {keyA: 'a2'},
myObj0 = {keyA: 'a0'}, myObj9 = {keyA: 'a9'};
maxHeap.add(1, myObj1);
maxHeap.has(myObj1) // true
maxHeap.has(myObj9) // false
maxHeap.add(6, myObj6);
maxHeap.has(myObj6) // true
maxHeap.add(5, myObj5);
maxHeap.has(myObj5) // true
maxHeap.add(2, myObj2);
maxHeap.has(myObj2) // true
maxHeap.has(myObj6) // true
maxHeap.add(0, myObj0);
maxHeap.has(myObj0) // true
maxHeap.has(myObj9) // false
maxHeap.add(9, myObj9);
maxHeap.has(myObj9) // true
const peek9 = maxHeap.peek(true);
peek9 && peek9.val && peek9.val.keyA // 'a9'
const heapToArr = maxHeap.toArray(true);
heapToArr.map(item => item?.val?.keyA) // ['a9', 'a2', 'a6', 'a1', 'a0', 'a5']
const values = ['a9', 'a6', 'a5', 'a2', 'a1', 'a0'];
let i = 0;
while (maxHeap.size > 0) {
const polled = maxHeap.poll(true);
polled && polled.val && polled.val.keyA // values[i]
i++;
}
const {MinHeap, MaxHeap} = require('data-structure-typed');
// /* or if you prefer */ const {MinHeap, MaxHeap} = require('heap-typed');
const minNumHeap = new MinHeap();
minNumHeap.add(1).add(6).add(2).add(0).add(5).add(9);
minNumHeap.has(1) // true
minNumHeap.has(2) // true
minNumHeap.poll() // 0
minNumHeap.poll() // 1
minNumHeap.peek() // 2
minNumHeap.has(1); // false
minNumHeap.has(2); // true
const arrFromHeap = minNumHeap.toArray();
arrFromHeap.length // 4
arrFromHeap[0] // 2
arrFromHeap[1] // 5
arrFromHeap[2] // 9
arrFromHeap[3] // 6
minNumHeap.sort() // [2, 5, 6, 9]
const maxHeap = new MaxHeap();
const myObj1 = {keyA: 'a1'}, myObj6 = {keyA: 'a6'}, myObj5 = {keyA: 'a5'}, myObj2 = {keyA: 'a2'},
myObj0 = {keyA: 'a0'}, myObj9 = {keyA: 'a9'};
maxHeap.add(1, myObj1);
maxHeap.has(myObj1) // true
maxHeap.has(myObj9) // false
maxHeap.add(6, myObj6);
maxHeap.has(myObj6) // true
maxHeap.add(5, myObj5);
maxHeap.has(myObj5) // true
maxHeap.add(2, myObj2);
maxHeap.has(myObj2) // true
maxHeap.has(myObj6) // true
maxHeap.add(0, myObj0);
maxHeap.has(myObj0) // true
maxHeap.has(myObj9) // false
maxHeap.add(9, myObj9);
maxHeap.has(myObj9) // true
const peek9 = maxHeap.peek(true);
peek9 && peek9.val && peek9.val.keyA // 'a9'
const heapToArr = maxHeap.toArray(true);
heapToArr.map(item => item?.val?.keyA) // ['a9', 'a2', 'a6', 'a1', 'a0', 'a5']
const values = ['a9', 'a6', 'a5', 'a2', 'a1', 'a0'];
let i = 0;
while (maxHeap.size > 0) {
const polled = maxHeap.poll(true);
polled && polled.val && polled.val.keyA // values[i]
i++;
}
Data Structure | Unit Test | Performance Test | API Documentation | Implemented |
---|---|---|---|---|
Binary Tree | Binary Tree | |||
Binary Search Tree (BST) | BST | |||
AVL Tree | AVLTree | |||
Tree Multiset | TreeMultiset | |||
Segment Tree | SegmentTree | |||
Binary Indexed Tree | BinaryIndexedTree | |||
Graph | AbstractGraph | |||
Directed Graph | DirectedGraph | |||
Undirected Graph | UndirectedGraph | |||
Linked List | SinglyLinkedList | |||
Singly Linked List | SinglyLinkedList | |||
Doubly Linked List | DoublyLinkedList | |||
Queue | Queue | |||
Object Deque | ObjectDeque | |||
Array Deque | ArrayDeque | |||
Stack | Stack | |||
Coordinate Set | CoordinateSet | |||
Coordinate Map | CoordinateMap | |||
Heap | Heap | |||
Priority Queue | PriorityQueue | |||
Max Priority Queue | MaxPriorityQueue | |||
Min Priority Queue | MinPriorityQueue | |||
Trie | Trie |
Big O Notation | Type | Computations for 10 elements | Computations for 100 elements | Computations for 1000 elements |
---|---|---|---|---|
O(1) | Constant | 1 | 1 | 1 |
O(log N) | Logarithmic | 3 | 6 | 9 |
O(N) | Linear | 10 | 100 | 1000 |
O(N log N) | n log(n) | 30 | 600 | 9000 |
O(N^2) | Quadratic | 100 | 10000 | 1000000 |
O(2^N) | Exponential | 1024 | 1.26e+29 | 1.07e+301 |
O(N!) | Factorial | 3628800 | 9.3e+157 | 4.02e+2567 |
Data Structure | Access | Search | Insertion | Deletion | Comments |
---|---|---|---|---|---|
Array | 1 | n | n | n | |
Stack | n | n | 1 | 1 | |
Queue | n | n | 1 | 1 | |
Linked List | n | n | 1 | n | |
Hash Table | - | n | n | n | In case of perfect hash function costs would be O(1) |
Binary Search Tree | n | n | n | n | In case of balanced tree costs would be O(log(n)) |
B-Tree | log(n) | log(n) | log(n) | log(n) | |
Red-Black Tree | log(n) | log(n) | log(n) | log(n) | |
AVL Tree | log(n) | log(n) | log(n) | log(n) | |
Bloom Filter | - | 1 | 1 | - | False positives are possible while searching |
Name | Best | Average | Worst | Memory | Stable | Comments |
---|---|---|---|---|---|---|
Bubble sort | n | n2 | n2 | 1 | Yes | |
Insertion sort | n | n2 | n2 | 1 | Yes | |
Selection sort | n2 | n2 | n2 | 1 | No | |
Heap sort | n log(n) | n log(n) | n log(n) | 1 | No | |
Merge sort | n log(n) | n log(n) | n log(n) | n | Yes | |
Quick sort | n log(n) | n log(n) | n2 | log(n) | No | Quicksort is usually done in-place with O(log(n)) stack space |
Shell sort | n log(n) | depends on gap sequence | n (log(n))2 | 1 | No | |
Counting sort | n + r | n + r | n + r | n + r | Yes | r - biggest number in array |
Radix sort | n * k | n * k | n * k | n + k | Yes | k - length of longest key |
FAQs
Heap. Javascript & Typescript Data Structure.
We found that heap-typed demonstrated a healthy version release cadence and project activity because the last version was released less than a year ago. It has 0 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
PyPI now supports digital attestations, enhancing security and trust by allowing package maintainers to verify the authenticity of Python packages.
Security News
GitHub removed 27 malicious pull requests attempting to inject harmful code across multiple open source repositories, in another round of low-effort attacks.
Security News
RubyGems.org has added a new "maintainer" role that allows for publishing new versions of gems. This new permission type is aimed at improving security for gem owners and the service overall.