Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

heap-typed

Package Overview
Dependencies
Maintainers
1
Versions
160
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

heap-typed

Heap. Javascript & Typescript Data Structure.

  • 1.42.4
  • Source
  • npm
  • Socket score

Version published
Maintainers
1
Created
Source

NPM GitHub top language npm eslint npm package minimized gzipped size (select exports) npm bundle size npm

What

Brief

This is a standalone Heap data structure from the data-structure-typed collection. If you wish to access more data structures or advanced features, you can transition to directly installing the complete data-structure-typed package

How

install

npm

npm i heap-typed --save

yarn

yarn add heap-typed

methods

Min Heap Max Heap

snippet

TS
    import {MinHeap, MaxHeap} from 'data-structure-typed';
    // /* or if you prefer */ import {MinHeap, MaxHeap} from 'heap-typed';

    const minNumHeap = new MinHeap<number>();
    minNumHeap.add(1).add(6).add(2).add(0).add(5).add(9);
    minNumHeap.has(1)        //  true
    minNumHeap.has(2)        //  true
    minNumHeap.poll()        //  0
    minNumHeap.poll()        //  1
    minNumHeap.peek()        //  2
    minNumHeap.has(1);       // false
    minNumHeap.has(2);       // true
    const arrFromHeap = minNumHeap.toArray();
    arrFromHeap.length       //  4
    arrFromHeap[0]           //  2
    arrFromHeap[1]           //  5
    arrFromHeap[2]           //  9
    arrFromHeap[3]           //  6
    minNumHeap.sort()        //  [2, 5, 6, 9]
    
    
    const maxHeap = new MaxHeap<{ keyA: string }>();
    const myObj1 = {keyA: 'a1'}, myObj6 = {keyA: 'a6'}, myObj5 = {keyA: 'a5'}, myObj2 = {keyA: 'a2'},
        myObj0 = {keyA: 'a0'}, myObj9 = {keyA: 'a9'};
    maxHeap.add(1, myObj1);
    maxHeap.has(myObj1)  // true
    maxHeap.has(myObj9)  // false
    maxHeap.add(6, myObj6);
    maxHeap.has(myObj6)  // true
    maxHeap.add(5, myObj5);
    maxHeap.has(myObj5)  // true
    maxHeap.add(2, myObj2);
    maxHeap.has(myObj2)  // true
    maxHeap.has(myObj6)  // true
    maxHeap.add(0, myObj0);
    maxHeap.has(myObj0)  // true
    maxHeap.has(myObj9)  // false
    maxHeap.add(9, myObj9);
    maxHeap.has(myObj9)  // true
    
    const peek9 = maxHeap.peek(true);
    peek9 && peek9.val && peek9.val.keyA  // 'a9'
    
    const heapToArr = maxHeap.toArray(true);
    heapToArr.map(item => item?.val?.keyA)  // ['a9', 'a2', 'a6', 'a1', 'a0', 'a5']
    
    const values = ['a9', 'a6', 'a5', 'a2', 'a1', 'a0'];
    let i = 0;
    while (maxHeap.size > 0) {
        const polled = maxHeap.poll(true);
        polled && polled.val && polled.val.keyA  // values[i]
        i++;
    }
JS
    const {MinHeap, MaxHeap} = require('data-structure-typed');
    // /* or if you prefer */ const {MinHeap, MaxHeap} = require('heap-typed');

    const minNumHeap = new MinHeap();
    minNumHeap.add(1).add(6).add(2).add(0).add(5).add(9);
    minNumHeap.has(1)        //  true
    minNumHeap.has(2)        //  true
    minNumHeap.poll()        //  0
    minNumHeap.poll()        //  1
    minNumHeap.peek()        //  2
    minNumHeap.has(1);       // false
    minNumHeap.has(2);       // true
    const arrFromHeap = minNumHeap.toArray();
    arrFromHeap.length       //  4
    arrFromHeap[0]           //  2
    arrFromHeap[1]           //  5
    arrFromHeap[2]           //  9
    arrFromHeap[3]           //  6
    minNumHeap.sort()        //  [2, 5, 6, 9]
    
    
    const maxHeap = new MaxHeap();
    const myObj1 = {keyA: 'a1'}, myObj6 = {keyA: 'a6'}, myObj5 = {keyA: 'a5'}, myObj2 = {keyA: 'a2'},
        myObj0 = {keyA: 'a0'}, myObj9 = {keyA: 'a9'};
    maxHeap.add(1, myObj1);
    maxHeap.has(myObj1)  // true
    maxHeap.has(myObj9)  // false
    maxHeap.add(6, myObj6);
    maxHeap.has(myObj6)  // true
    maxHeap.add(5, myObj5);
    maxHeap.has(myObj5)  // true
    maxHeap.add(2, myObj2);
    maxHeap.has(myObj2)  // true
    maxHeap.has(myObj6)  // true
    maxHeap.add(0, myObj0);
    maxHeap.has(myObj0)  // true
    maxHeap.has(myObj9)  // false
    maxHeap.add(9, myObj9);
    maxHeap.has(myObj9)  // true
    
    const peek9 = maxHeap.peek(true);
    peek9 && peek9.val && peek9.val.keyA  // 'a9'
    
    const heapToArr = maxHeap.toArray(true);
    heapToArr.map(item => item?.val?.keyA)  // ['a9', 'a2', 'a6', 'a1', 'a0', 'a5']
    
    const values = ['a9', 'a6', 'a5', 'a2', 'a1', 'a0'];
    let i = 0;
    while (maxHeap.size > 0) {
        const polled = maxHeap.poll(true);
        polled && polled.val && polled.val.keyA  // values[i]
        i++;
    }

API docs & Examples

API Docs

Live Examples

Examples Repository

Data Structures

Data StructureUnit TestPerformance TestAPI DocumentationImplemented
Binary Tree Binary Tree
Binary Search Tree (BST)BST
AVL TreeAVLTree
Tree MultisetTreeMultiset
Segment TreeSegmentTree
Binary Indexed TreeBinaryIndexedTree
GraphAbstractGraph
Directed GraphDirectedGraph
Undirected GraphUndirectedGraph
Linked ListSinglyLinkedList
Singly Linked ListSinglyLinkedList
Doubly Linked ListDoublyLinkedList
QueueQueue
Object DequeObjectDeque
Array DequeArrayDeque
StackStack
Coordinate SetCoordinateSet
Coordinate MapCoordinateMap
HeapHeap
Priority QueuePriorityQueue
Max Priority QueueMaxPriorityQueue
Min Priority QueueMinPriorityQueue
TrieTrie

Why

Complexities

performance of Big O

Big O NotationTypeComputations for 10 elementsComputations for 100 elementsComputations for 1000 elements
O(1)Constant111
O(log N)Logarithmic369
O(N)Linear101001000
O(N log N)n log(n)306009000
O(N^2)Quadratic100100001000000
O(2^N)Exponential10241.26e+291.07e+301
O(N!)Factorial36288009.3e+1574.02e+2567

Data Structure Complexity

Data StructureAccessSearchInsertionDeletionComments
Array1nnn
Stacknn11
Queuenn11
Linked Listnn1n
Hash Table-nnnIn case of perfect hash function costs would be O(1)
Binary Search TreennnnIn case of balanced tree costs would be O(log(n))
B-Treelog(n)log(n)log(n)log(n)
Red-Black Treelog(n)log(n)log(n)log(n)
AVL Treelog(n)log(n)log(n)log(n)
Bloom Filter-11-False positives are possible while searching

Sorting Complexity

NameBestAverageWorstMemoryStableComments
Bubble sortnn2n21Yes
Insertion sortnn2n21Yes
Selection sortn2n2n21No
Heap sortn log(n)n log(n)n log(n)1No
Merge sortn log(n)n log(n)n log(n)nYes
Quick sortn log(n)n log(n)n2log(n)NoQuicksort is usually done in-place with O(log(n)) stack space
Shell sortn log(n)depends on gap sequencen (log(n))21No
Counting sortn + rn + rn + rn + rYesr - biggest number in array
Radix sortn * kn * kn * kn + kYesk - length of longest key

overview diagram

complexities

complexities of data structures

Keywords

FAQs

Package last updated on 07 Nov 2023

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc