The idea
A value of type Type<T>
(called "runtime type") is the runtime representation of the static type T
:
export interface Type<A> {
readonly _A: A
readonly name: string
readonly validate: Validate<A>
}
where Validate<T>
is a specific validation function for T
type Validate<T> = (value: any, context: Context) => Either<Array<ValidationError>, T>;
Note. The Either
type is defined in fp-ts, a library containing implementations of common algebraic types in TypeScript.
Example
A runtime type representing string
can be defined as
import * as t from 'io-ts'
export const string: t.Type<string> = {
_A: t._A,
name: 'string',
validate: (value, context) => (typeof value === 'string' ? t.success(value) : t.failure<string>(value, context))
}
Note: The _A
field contains a dummy value and is useful to extract a static type from the runtime type (see the "TypeScript integration" section below)
A runtime type can be used to validate an object in memory (for example an API payload)
const Person = t.interface({
name: t.string,
age: t.number
})
t.validate(JSON.parse('{"name":"Giulio","age":43}'), Person)
t.validate(JSON.parse('{"name":"Giulio"}'), Person)
Error reporters
A reporter implements the following interface
interface Reporter<A> {
report: (validation: Validation<any>) => A;
}
This package exports two default reporters
PathReporter: Reporter<Array<string>>
ThrowReporter: Reporter<void>
Example
import { PathReporter } from 'io-ts/lib/PathReporter'
import { ThrowReporter } from 'io-ts/lib/ThrowReporter'
const validation = t.validate({"name":"Giulio"}, Person)
console.log(PathReporter.report(validation))
ThrowReporter.report(validation)
TypeScript integration
Runtime types can be inspected
This library uses TypeScript extensively. Its API is defined in a way which automatically infers types for produced values
Note that the type annotation isn't needed, TypeScript infers the type automatically based on a schema.
Static types can be extracted from runtime types with the TypeOf
operator
type IPerson = t.TypeOf<typeof Person>
type IPerson = {
name: string,
age: number
}
Recursive types
Note that recursive types can't be inferred
type ICategory = {
name: string,
categories: Array<ICategory>
}
const Category = t.recursion<ICategory>('Category', self =>
t.interface({
name: t.string,
categories: t.array(self)
})
)
Implemented types / combinators
import * as t from 'io-ts'
Type | TypeScript annotation syntax | Runtime type / combinator |
---|
null | null | t.null or t.nullType |
undefined | undefined | t.undefined |
string | string | t.string |
number | number | t.number |
boolean | boolean | t.boolean |
any | any | t.any |
never | never | t.never |
integer | ✘ | t.Integer |
array of any | Array<any> | t.Array |
array of type | Array<A> | t.array(A) |
dictionary of any | { [key: string]: any } | t.Dictionary |
dictionary of type | { [key: A]: B } | t.dictionary(A, B) |
function | Function | t.Function |
literal | 's' | t.literal('s') |
partial | Partial<{ name: string }> | t.partial({ name: t.string }) |
readonly | Readonly<{ name: string }> | t.readonly({ name: t.string }) |
readonly array | ReadonlyArray<number> | t.readonlyArray(t.number) |
interface | interface A { name: string } | t.interface({ name: t.string }) or t.type({ name: t.string }) |
interface inheritance | interface B extends A {} | t.intersection([ A, t.interface({}) ]) |
tuple | [ A, B ] | t.tuple([ A, B ]) |
union | A | B | t.union([ A, B ]) |
intersection | A & B | t.intersection([ A, B ]) |
keyof | keyof M | t.keyof(M) |
recursive types | see Recursive types | t.recursion(name, definition) |
refinement | ✘ | t.refinement(A, predicate) |
map | ✘ | t.map(f, type) |
prism | ✘ | t.prism(type, getOption) |
Mixing required and optional props
Note. You can mix required and optional props using an intersection
const A = t.interface({
foo: t.string
})
const B = t.partial({
bar: t.number
})
const C = t.intersection([A, B])
type CT = t.TypeOf<typeof C>
type CT = {
foo: string,
bar?: number
}
Custom types
You can define your own types. Let's see an example
import * as t from 'io-ts'
const DateFromString: t.Type<Date> = {
_A: t._A,
name: 'DateFromString',
validate: (v, c) =>
t.string.validate(v, c).chain(s => {
const d = new Date(s)
return isNaN(d.getTime()) ? t.failure<Date>(s, c) : t.success(d)
})
}
const s = new Date(1973, 10, 30).toISOString()
t.validate(s, DateFromString)
t.validate('foo', DateFromString)
Note that you can deserialize while validating.
Custom combinators
You can define your own combinators. Let's see some examples
The maybe
combinator
An equivalent to T | null
export function maybe<RT extends t.Any>(
type: RT,
name?: string
): t.UnionType<[RT, typeof t.null], t.TypeOf<RT> | null> {
return t.union([type, t.null], name)
}
The brand
combinator
The problem
const payload = {
celsius: 100,
fahrenheit: 100
}
const Payload = t.interface({
celsius: t.number,
fahrenheit: t.number
})
function naiveConvertFtoC(x: number): number {
return (x - 32) / 1.8;
}
console.log(t.validate(payload, Payload).map(x => naiveConvertFtoC(x.celsius)))
Solution (branded types)
export function brand<T, B extends string>(type: t.Type<T>, brand: B): t.Type<T & { readonly __brand: B }> {
return type as any
}
const Fahrenheit = brand(t.number, 'Fahrenheit')
const Celsius = brand(t.number, 'Celsius')
type CelsiusT = t.TypeOf<typeof Celsius>
type FahrenheitT = t.TypeOf<typeof Fahrenheit>
const Payload2 = t.interface({
celsius: Celsius,
fahrenheit: Fahrenheit
})
function convertFtoC(fahrenheit: FahrenheitT): CelsiusT {
return ((fahrenheit - 32) / 1.8) as CelsiusT
}
console.log(t.validate(payload, Payload2).map(x => convertFtoC(x.celsius)))
console.log(t.validate(payload, Payload2).map(x => convertFtoC(x.fahrenheit)))
Recipes
Is there a way to turn the checks off in production code?
No, however you can define your own logic for that (if you really trust the input)
import * as t from 'io-ts'
import { failure } from 'io-ts/lib/PathReporter'
function unsafeValidate<T>(value: any, type: t.Type<T>): T {
if (process.env.NODE_ENV !== 'production') {
return t.validate(value, type).fold(errors => {
throw new Error(failure(errors).join('\n'))
}, x => x)
}
return value as T
}
Known issues
Due to an upstream bug, VS Code might display weird types for nested interfaces
const NestedInterface = t.interface({
foo: t.interface({
bar: t.string
})
});
type NestedInterfaceType = t.TypeOf<typeof NestedInterface>;