Security News
Weekly Downloads Now Available in npm Package Search Results
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.
js-regression
Advanced tools
Package provides javascript implementation of linear regression and logistic regression
npm install js-regression
The sample code below illustrates how to run the multiple linear regression (polynomial in this case):
var jsregression = require('js-regression');
// === training data generated from y = 2.0 + 5.0 * x + 2.0 * x^2 === //
var data = [];
for(var x = 1.0; x < 100.0; x += 1.0) {
var y = 2.0 + 5.0 * x + 2.0 * x * x + Math.random() * 1.0;
data.push([x, x * x, y]); // Note that the last column should be y the output
}
// === Create the linear regression === //
var regression = new jsregression.LinearRegression({
alpha: 0.001, //
iterations: 300,
lambda: 0.0
});
// can also use default configuration: var regression = new jsregression.LinearRegression();
// === Train the linear regression === //
var model = regression.fit(data);
// === Print the trained model === //
console.log(model);
// === Testing the trained linear regression === //
var testingData = [];
for(var x = 1.0; x < 100.0; x += 1.0) {
var actual_y = 2.0 + 5.0 * x + 2.0 * x * x + Math.random() * 1.0;
var predicted_y = regression.transform([x, x * x]);
console.log("actual: " + actual_y + " predicted: " + predicted_y);
}
The sample code below illustrates how to run the logistic regression on the iris datsets to classify whether a data row belong to species Iris-virginica:
var jsregression = require('js-regression');
var iris = require('js-datasets-iris');
// === Create the linear regression === //
var logistic = new jsregression.LogisticRegression({
alpha: 0.001,
iterations: 1000,
lambda: 0.0
});
// can also use default configuration: var logistic = new jsregression.LogisticRegression();
// === Create training data and testing data ===//
iris.shuffle();
var trainingDataSize = Math.round(iris.rowCount * 0.8);
var trainingData = [];
var testingData = [];
for(var i=0; i < iris.rowCount ; ++i) {
var row = [];
row.push(iris.data[i][0]); // sepalLength;
row.push(iris.data[i][1]); // sepalWidth;
row.push(iris.data[i][2]); // petalLength;
row.push(iris.data[i][3]); // petalWidth;
row.push(iris.data[i][4] == "Iris-virginica" ? 1.0 : 0.0); // output which is 1 if species is Iris-virginica; 0 otherwise
if(i < trainingDataSize) {
trainingData.push(row);
} else {
testingData.push(row);
}
}
// === Train the logistic regression === //
var model = logistic.fit(trainingData);
// === Print the trained model === //
console.log(model);
// === Testing the trained logistic regression === //
for(var i=0; i < testingData.length; ++i){
var probabilityOfSpeciesBeingIrisVirginica = logistic.transform(testingData[i]);
var predicted = logistic.transform(testingData[i]) >= logistic.threshold ? 1 : 0;
console.log("actual: " + testingData[i][4] + " probability of being Iris-virginica: " + probabilityOfSpeciesBeingIrisVirginica);
console.log("actual: " + testingData[i][4] + " predicted: " + predicted);
}
The sample code below illustrates how to run the multi-class classifier on the iris datasets to classifiy the species of each data row:
var classifier = new jsregression.MultiClassLogistic({
alpha: 0.001,
iterations: 1000,
lambda: 0.0
});
iris.shuffle();
var trainingDataSize = Math.round(iris.rowCount * 0.9);
var trainingData = [];
var testingData = [];
for(var i=0; i < iris.rowCount ; ++i) {
var row = [];
row.push(iris.data[i][0]); // sepalLength;
row.push(iris.data[i][1]); // sepalWidth;
row.push(iris.data[i][2]); // petalLength;
row.push(iris.data[i][3]); // petalWidth;
row.push(iris.data[i][4]); // output is species
if(i < trainingDataSize){
trainingData.push(row);
} else {
testingData.push(row);
}
}
var result = classifier.fit(trainingData);
console.log(result);
for(var i=0; i < testingData.length; ++i){
var predicted = classifier.transform(testingData[i]);
console.log("actual: " + testingData[i][4] + " predicted: " + predicted);
}
Include the "node_modules/js-regression/build/jsregression.min.js" (or "node_modules/js-regression/src/jsregression.js") in your HTML <script> tag
The codes in the following html files illustrates how to use them in html pages:
FAQs
Package implements linear regression and logistic regression
The npm package js-regression receives a total of 404 weekly downloads. As such, js-regression popularity was classified as not popular.
We found that js-regression demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 1 open source maintainer collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Socket's package search now displays weekly downloads for npm packages, helping developers quickly assess popularity and make more informed decisions.
Security News
A Stanford study reveals 9.5% of engineers contribute almost nothing, costing tech $90B annually, with remote work fueling the rise of "ghost engineers."
Research
Security News
Socket’s threat research team has detected six malicious npm packages typosquatting popular libraries to insert SSH backdoors.