Huge News!Announcing our $40M Series B led by Abstract Ventures.Learn More
Socket
Sign inDemoInstall
Socket

js-regression

Package Overview
Dependencies
Maintainers
1
Versions
10
Alerts
File Explorer

Advanced tools

Socket logo

Install Socket

Detect and block malicious and high-risk dependencies

Install

js-regression

Package implements linear regression and logistic regression

  • 1.0.10
  • latest
  • Source
  • npm
  • Socket score

Version published
Weekly downloads
542
increased by32.52%
Maintainers
1
Weekly downloads
 
Created
Source

js-regression

Package provides javascript implementation of linear regression and logistic regression

Build Status Coverage Status

Install

npm install js-regression

Usage

Linear Regression

The sample code below illustrates how to run the multiple linear regression (polynomial in this case):

var jsregression = require('js-regression');

// === training data generated from y = 2.0 + 5.0 * x + 2.0 * x^2 === //
var data = [];
for(var x = 1.0; x < 100.0; x += 1.0) {
  var y = 2.0 + 5.0 * x + 2.0 * x * x + Math.random() * 1.0;
  data.push([x, x * x, y]); // Note that the last column should be y the output
}

// === Create the linear regression === //
var regression = new jsregression.LinearRegression({
  alpha: 0.001, // 
  iterations: 300,
  lambda: 0.0
});
// can also use default configuration: var regression = new jsregression.LinearRegression(); 

// === Train the linear regression === //
var model = regression.fit(data);

// === Print the trained model === //
console.log(model);


// === Testing the trained linear regression === //
var testingData = [];
for(var x = 1.0; x < 100.0; x += 1.0) {
  var actual_y = 2.0 + 5.0 * x + 2.0 * x * x + Math.random() * 1.0;
  var predicted_y = regression.transform([x, x * x]);
  console.log("actual: " + actual_y + " predicted: " + predicted_y); 
}

Logistic Regression

The sample code below illustrates how to run the logistic regression on the iris datsets to classify whether a data row belong to species Iris-virginica:

var jsregression = require('js-regression');
var iris = require('js-datasets-iris');

// === Create the linear regression === //
var logistic = new jsregression.LogisticRegression({
   alpha: 0.001,
   iterations: 1000,
   lambda: 0.0
});
// can also use default configuration: var logistic = new jsregression.LogisticRegression(); 

// === Create training data and testing data ===//
iris.shuffle();

var trainingDataSize = Math.round(iris.rowCount * 0.8);
var trainingData = [];
var testingData = [];
for(var i=0; i < iris.rowCount ; ++i) {
   var row = [];
   row.push(iris.data[i][0]); // sepalLength;
   row.push(iris.data[i][1]); // sepalWidth;
   row.push(iris.data[i][2]); // petalLength;
   row.push(iris.data[i][3]); // petalWidth;
   row.push(iris.data[i][4] == "Iris-virginica" ? 1.0 : 0.0); // output which is 1 if species is Iris-virginica; 0 otherwise
   if(i < trainingDataSize) {
        trainingData.push(row);
   } else {
       testingData.push(row);
   }
}


// === Train the logistic regression === //
var model = logistic.fit(trainingData);

// === Print the trained model === //
console.log(model);

// === Testing the trained logistic regression === //
for(var i=0; i < testingData.length; ++i){
   var probabilityOfSpeciesBeingIrisVirginica = logistic.transform(testingData[i]);
   var predicted = logistic.transform(testingData[i]) >= logistic.threshold ? 1 : 0;
   console.log("actual: " + testingData[i][4] + " probability of being Iris-virginica: " + probabilityOfSpeciesBeingIrisVirginica);
   console.log("actual: " + testingData[i][4] + " predicted: " + predicted);
}

Multi-Class Classification using One-vs-All Logistic Regression

The sample code below illustrates how to run the multi-class classifier on the iris datasets to classifiy the species of each data row:

var classifier = new jsregression.MultiClassLogistic({
   alpha: 0.001,
   iterations: 1000,
   lambda: 0.0
});

iris.shuffle();

var trainingDataSize = Math.round(iris.rowCount * 0.9);
var trainingData = [];
var testingData = [];
for(var i=0; i < iris.rowCount ; ++i) {
   var row = [];
   row.push(iris.data[i][0]); // sepalLength;
   row.push(iris.data[i][1]); // sepalWidth;
   row.push(iris.data[i][2]); // petalLength;
   row.push(iris.data[i][3]); // petalWidth;
   row.push(iris.data[i][4]); // output is species
   if(i < trainingDataSize){
        trainingData.push(row);
   } else {
       testingData.push(row);
   }
}


var result = classifier.fit(trainingData);

console.log(result);

for(var i=0; i < testingData.length; ++i){
   var predicted = classifier.transform(testingData[i]);
   console.log("actual: " + testingData[i][4] + " predicted: " + predicted);
}

Usage In HTML

Include the "node_modules/js-regression/build/jsregression.min.js" (or "node_modules/js-regression/src/jsregression.js") in your HTML <script> tag

The codes in the following html files illustrates how to use them in html pages:

Keywords

FAQs

Package last updated on 23 Nov 2017

Did you know?

Socket

Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.

Install

Related posts

SocketSocket SOC 2 Logo

Product

  • Package Alerts
  • Integrations
  • Docs
  • Pricing
  • FAQ
  • Roadmap
  • Changelog

Packages

npm

Stay in touch

Get open source security insights delivered straight into your inbox.


  • Terms
  • Privacy
  • Security

Made with ⚡️ by Socket Inc