JSON-e
JSON-e is a data-structure parameterization system for embedding context in
JSON objects.
The central idea is to treat a data structure as a "template" and transform it,
using another data structure as context, to produce an output data structure.
There are countless libraries to do this with strings, such as
mustache. What makes JSON-e unique is that it
operates on data structures, not on their textual representation. This allows
input to be written in a number of formats (JSON, YAML, etc.) or even generated
dynamically. It also means that the output cannot be "invalid", even when
including large chunks of contextual data.
JSON-e is also designed to be safe for use on untrusted data. It never uses
eval
or any other function that might result in arbitrary code execution. It
also disallows unbounded iteration, so any JSON-e rendering operation will
finish in finite time.
Interface
JavaScript
The JS module exposes following interface:
import jsone from 'json-e';
var template = {a: {$eval: "foo.bar"}};
var context = {foo: {bar: "zoo"}};
console.log(jsone(template, context));
Note that the context can contain functions, and those functions can be called
from the template:
var template = {$eval: "foo(1)"};
var context = {"foo": function(x) { return x + 2; }};
console.log(jsone(template, context));
NOTE: Context functions are called synchronously. Any complex asynchronous
operations should be handled before rendering the template.
NOTE: If the template is untrusted, it can pass arbitrary data to functions
in the context, which must guard against such behavior.
Python
The Python distribution exposes a render
function:
import jsone
template = {"a": {"$eval": "foo.bar"}}
context = {"foo": {"bar": "zoo"}}
print(jsone.render(template, context))
and also allows custom functions in the context:
template = {"$eval": "foo(1)"}
context = {"foo": lambda x: x + 2}
print(jsone.render(template, context))
Language Reference
The examples here are given in YAML for ease of reading. Of course, the
rendering operation takes place on the parsed data, so the input format is
irrelevant to its operation.
Simple Operations
All JSON-e directives involve the $
character, so a template without any directives is
rendered unchanged:
template: {key: [1,2,{key2: 'val', key3: 1}, true], f: false}
context: {}
result: {key: [1,2,{key2: 'val', key3: 1}, true], f: false}
String Interpolation
The simplest form of substitution occurs within strings, using ${..}
:
template: {message: 'hello ${key}', 'k=${num}': true}
context: {key: 'world', num: 1}
result: {message: 'hello world', 'k=1': true}
The bit inside the ${..}
is an expression, and must evaluate to something
that interpolates obviously into a string (so, a string, number, boolean,).
If it is null, then the expression interpolates into an empty string.
The expression syntax is described in more detail below.
Values interpolate as their JSON literal values:
template: ["number: ${num}", "booleans: ${t} ${f}", "null: ${nil}"]
context: {num: 3, t: true, f: false, nil: null}
result: ["number: 3", "booleans: true false", "null: "]
Note that object keys can be interpolated, too:
template: {"tc_${name}": "${value}"}
context: {name: 'foo', value: 'bar'}
result: {"tc_foo": "bar"}
The string ${
can be escaped as $${
.
Operators
JSON-e defines a bunch of operators. Each is represented as an object with a
property beginning with $
. This object can be buried deeply within the
template. Some operators take additional arguments as properties of the same
object.
$eval
The $eval
operator evaluates the given expression and is replaced with the
result of that evaluation. Unlike with string interpolation, the result need
not be a string, but can be an arbitrary data structure.
template: {config: {$eval: 'settings.staging'}}
context:
settings:
staging:
transactionBackend: mock
production:
transactionBackend: customerdb
result: {config: {transactionBackend: 'mock'}}
The expression syntax is described in more detail below.
$json
The $json
operator formats the given value as JSON. It does not evaluate the
value (use $eval
for that). While this can be useful in some cases, it is an
unusual case to include a JSON string in a larger data structure.
template: {$json: [a, b, {$eval: 'a+b'}, 4]}
context: {a: 1, b: 2}
result: '["a", "b", 3, 4]'
$if
- then
- else
The $if
operator supports conditionals. It evaluates the given value, and
replaces itself with the then
or else
properties. If either property is
omitted, then the expression is omitted from the parent object.
template: {key: {$if: 'cond', then: 1}, k2: 3}
context: {cond: true}
result: {key: 1, k2: 3}
template: {$if: 'x > 5', then: 1, else: -1}
context: {x: 10}
result: 1
template: [1, {$if: 'cond', else: 2}, 3]
context: {cond: false}
result: [1,2,3]
template: {key: {$if: 'cond', then: 2}, other: 3}
context: {cond: false}
result: {other: 3}
$flatten
The $flatten
operator flattens an array of arrays into one array.
template: {$flatten: [[1, 2], [3, 4], [5]]}
context: {}
result: [1, 2, 3, 4, 5]
$flattenDeep
The $flattenDeep
operator deeply flattens an array of arrays into one array.
template: {$flattenDeep: [[1, [2, [3]]]]}
context: {}
result: [1, 2, 3]
$fromNow
The $fromNow
operator is a shorthand for the built-in function fromNow
. It
creates a JSON (ISO 8601) datestamp for a time relative to the current time
(see the now
builtin, below) or, if from
is given, relative to that time.
The offset is specified by a sequence of number/unit pairs in a string. For
example:
template: {$fromNow: '2 days 1 hour'}
context: {}
result: '2017-01-19T16:27:20.974Z'
template: {$fromNow: '1 hour', from: '2017-01-19T16:27:20.974Z'}
context: {}
result: '2017-01-19T17:27:20.974Z'
The available units are day
, hour
, and minute
, for all of which a plural
is also accepted.
$let
The $let
operator evaluates an expression using a context amended with the
given values. It is analogous to the Haskell where
clause.
template: {$let: {ts: 100, foo: 200},
in: [{$eval: "ts+foo"}, {$eval: "ts-foo"}, {$eval: "ts*foo"}]}
context: {}
result: [300, -100, 20000]
The $let
operator here added the ts
and foo
variables to the scope of
the context and accordingly evaluated the in
clause using those variables
to return the correct result.
$map
The $map
operator evaluates an expression for each value of the given array or object,
constructing the result as an array or object of the evaluated values.
Given an array, map returns an array, and given an object, the result is an object. When
given an object, the value of your each
should be an object and each will be merged
internally to give the resulting object. If keys intersect, later keys will win.
template:
$map: [2, 4, 6]
each(x): {$eval: 'x + a'}
context: {a: 1}
result: [3, 5, 7]
template:
$map: {a: 1, b: 2, c: 3}
each(y): {'${y.key}x': {$eval: 'y.val + 1'}}
context: {}
result: {ax: 2, bx: 3, cx: 4}
The array or object is the value of the $map
property, and the expression to evaluate
is given by each(var)
where var
is the name of the variable containing each
element. In the case of iterating over an object, var
will be an object with two keys:
key
and val
. These keys correspond to a key in the object and its corresponding value.
$merge
The $merge
operator merges an array of objects, returning a single object
that combines all of the objects in the array, where the right-side objects
overwrite the values of the left-side ones.
template: {$merge: [{a: 1, b: 1}, {b: 2, c: 3}, {d: 4}]}
context: {}
result: {a: 1, b: 2, c: 3, d: 4}
$mergeDeep
The $mergeDeep
operator is like $merge
, but it recurses into objects to
combine their contents property by property. Arrays are concatenated.
template:
$mergeDeep:
- task:
payload:
command: [a, b]
- task:
extra:
foo: bar
- task:
payload:
command: [c]
context: {}
result:
task:
extra:
foo: bar
payload:
command: [a, b, c]
$sort
The $sort
operator sorts the given array. It takes a by(var)
property which
should evaluate to a comparable value for each element. The by(var)
property
defaults to the identity function.
template:
$sort: [{a: 2}, {a: 1, b: []}, {a: 3}]
by(x): 'x.a'
context: {}
result: [{a: 1, b: []}, {a: 2}, {a: 3}]
$reverse
The $reverse
operator simply reverses the given array.
template: {$reverse: [3, 4, 1, 2]}
context: {}
result: [2, 1, 4, 3]
Escaping operators
All property names starting with $
are reserved for JSON-e.
You can use $$
to escape such properties:
template: {$$reverse: [3, 2, {$$eval: '2 - 1'}, 0]}
context: {}
result: {$reverse: [3, 2, {$eval: '2 - 1'}, 0]}
Truthiness
Many values can be evaluated in context where booleans are required,
not just booleans themselves. JSON-e defines the following values as false.
Anything else will be true.
template: {$if: 'a || b || c || d || e || f', then: "uh oh", else: "falsy" }
context: {a: null, b: [], c: {}, d: "", e: 0, f: false}
result: "falsy"
Expression Syntax
Expression are given in a simple Python- or JavaScript-like expression
language. Its data types are limited to JSON types plus function objects.
Literals
Literals are similar to those for JSON. Numeric literals only accept integer
and decimal notation. Strings do not support any kind of escaping. The use of
\n
and \t
in the example below depends on the YAML parser to expand the
escapes.
template:
- {$eval: "1.3"}
- {$eval: "'abc'"}
- {$eval: '"abc"'}
- {$eval: "'\n\t'"}
context: {}
result:
- 1.3
- "abc"
- "abc"
- "\n\t"
Array and object literals also look much like JSON, with bare identifiers
allowed as keys like in Javascript:
template:
- {$eval: '[1, 2, "three"]'}
- {$eval: '{foo: 1, "bar": 2}'}
context: {}
result:
- [1, 2, "three"]
- {"foo": 1, "bar": 2}
Context References
Bare identifiers refer to items from the context or to built-ins (described below).
template: {$eval: '[x, z, x+z]'}
context: {x: 'quick', z: 'sort'}
reslut: ['quick', 'sort', 'quicksort']
Arithmetic Operations
The usual arithmetic operators are all defined, with typical associativity and
precedence:
template:
- {$eval: 'x + z'}
- {$eval: 's + t'}
- {$eval: 'z - x'}
- {$eval: 'x * z'}
- {$eval: 'z / x'}
- {$eval: 'z ** 2'}
- {$eval: '(z / x) ** 2'}
context: {x: 10, z: 20, s: "face", t: "plant"}
result:
- 30
- "faceplant"
- 10
- 200
- 2
- 400
- 4
Note that strings can be concatenated with +
, but none of the other operators
apply.
Comparison Operations
Comparisons work as expected. Equality is "deep" in the sense of doing
comparisons of the contents of data structures.
template:
- {$eval: 'x < z'}
- {$eval: 'x <= z'}
- {$eval: 'x > z'}
- {$eval: 'x >= z'}
- {$eval: 'deep == [1, [3, {a: 5}]]'}
- {$eval: 'deep != [1, [3, {a: 5}]]'}
context: {x: -10, z: 10, deep: [1, [3, {a: 5}]]}
result: [true, true, false, false, true, false]
Boolean Operations
Boolean operations use C- and Javascript-style symbls ||
, &&
, and !
:
template: {$eval: '!(false || false) && true'}
context: {}
result: true
Object Property Access
Like Javascript, object properties can be accessed either with array-index
syntax or with dot syntax. Unlike Javascript, obj.prop
is an error if obj
does not have prop
, while obj['prop']
will evaulate to null
.
template: {$eval: 'v.a + v["b"]'}
context: {v: {a: 'apple', b: 'bananna', c: 'carrot'}}
result: 'applebananna'
Indexing and Slicing
Strings and arrays can be indexed and sliced using a Python-like indexing
scheme. Negative indexes are counted from the end of the value. Slices are
treated as "half-open", meaning that the result contains the first index and
does not contain the second index. A "backward" slice with the start index
greater than the end index is treated as empty.
template:
- {$eval: '[array[1], string[1]]'}
- {$eval: '[array[1:4], string[1:4]]'}
- {$eval: '[array[2:], string[2:]]'}
- {$eval: '[array[:2], string[:2]]'}
- {$eval: '[array[4:2], string[4:2]]'}
- {$eval: '[array[-2], string[-2]]'}
- {$eval: '[array[-2:], string[-2:]]'}
- {$eval: '[array[:-3], string[:-3]]'}
context: {array: ['a', 'b', 'c', 'd', 'e'], string: 'abcde'}
result:
- ['b', 'b']
- [['b', 'c', 'd'], 'bcd']
- [['c', 'd', 'e'], 'cde']
- [['a', 'b'], 'ab']
- [[], '']
- ['d', 'd']
- [['d', 'e'], 'de']
- [['a', 'b'], 'ab']
Containment Operation
The in
keyword can be used to check for containment: a property in an object,
an element in an array, or a substring in a string.
template:
- {$eval: '"foo" in {foo: 1, bar: 2}'}
- {$eval: '"foo" in ["foo", "bar"]'}
- {$eval: '"foo" in "foobar"'}
context: {}
result: [true, true, true]
Function Invocation
Function calls are made with the usual fn(arg1, arg2)
syntax. Functions are
not JSON data, so they cannot be created in JSON-e, but they can be provided as
built-ins or supplied in the context and called from JSON-e.
Built-In Functions and Variables
The expression language provides a laundry-list of built-in functions/variables. Library
users can easily add additional functions/variables, or override the built-ins, as part
of the context.
Time
The built-in context value now
is set to the current time at the start of
evaluation of the template, and used as the default "from" value for $fromNow
and the built-in fromNow()
.
template:
- {$eval: 'now'}
- {$eval: 'fromNow("1 minute")'}
- {$eval: 'fromNow("1 minute", "2017-01-19T16:27:20.974Z")'}
context: {}
result:
- '2017-01-19T16:27:20.974Z',
- '2017-01-19T16:28:20.974Z',
- '2017-01-19T16:28:20.974Z',
Math
template:
- {$eval: 'min(1, 3, 5)'}
- {$eval: 'max(2, 4, 6)'}
- {$eval: 'sqrt(16)'}
- {$eval: 'ceil(0.3)'}
- {$eval: 'floor(0.3)'}
- {$eval: 'abs(-0.3)'}
context: {}
result:
- 1
- 6
- 4
- 1
- 0
- 0.3
Strings
template:
- {$eval: 'lowercase("Fools!")'}
- {$eval: 'uppercase("Fools!")'}
- {$eval: 'str(130)'}
- {$eval: 'lstrip(" room ")'}
- {$eval: 'rstrip(" room ")'}
- {$eval: 'strip(" room ")'}
context: {}
result:
- "fools!"
- "FOOLS!"
- "130"
- "room "
- " room"
- room
Length
The len()
built-in returns the length of a string or array.
template: {$eval: 'len([1, 2, 3])'}
context: {}
result: 3
Development and testing
JSON-e development
You should run npm install
to install the required packages for json-e's
execution and development. For Python, activate a virtualenv and run pip install -e .
.
You can run ./test.sh
to run json-e's tests and lint checks.
Demo development
The demo website is a Neutrino app hosted in
demo/
. Follow the usual Neutrino development process (yarn install && yarn start
) there.
The resulting application embeds and enriches this README.
Making a Release
- Update the version, commit, and tag --
npm version patch
(or minor or major, depending) - Push to release the JS version --
git push && git push --tags
- Release to PyPi:
python setup.py sdist
twine upload dist/json-e-<version>.tar.gz