Security News
The Risks of Misguided Research in Supply Chain Security
Snyk's use of malicious npm packages for research raises ethical concerns, highlighting risks in public deployment, data exfiltration, and unauthorized testing.
kappa-core
Advanced tools
kappa-core is a minimal peer-to-peer database, based on append-only logs and materialized views.
New to kappa architecture? There is a short introduction.
This example sets up an on-disk log store and an in-memory view store. The view tallies the sum of all of the numbers in the logs, and provides an API for getting that sum.
var kappa = require('kappa-core')
var view = require('kappa-view')
var memdb = require('memdb')
// Store logs in a directory called "log". Store views in memory.
var core = kappa('./log', { valueEncoding: 'json' })
var store = memdb()
// View definition
var sumview = view(store, function (db) {
return {
// Called with a batch of log entries to be processed by the view.
// No further entries are processed by this view until 'next()' is called.
map: function (entries, next) {
db.get('sum', function (err, value) {
var sum
if (err && err.notFound) sum = 0
else if (err) return next(err)
else sum = value
})
entries.forEach(function (entry) {
if (typeof entry.value === 'number') sum += entry.value
})
db.put('sum', sum, next)
},
// Whatever is defined in the "api" object is publicly accessible
api: {
get: function (core, cb) {
this.ready(function () { // wait for all views to catch up
cb(null, sum)
})
}
}
}
})
// the api will be mounted at core.api.sum
core.use('sum', 1, sumview) // name the view 'sum' and consider the 'sumview' logic as version 1
core.writer('default', function (err, writer) {
writer.append(1, function (err) {
core.api.sum.get(function (err, value) {
console.log(value) // 1
})
})
})
var kappa = require('kappa-core')
Create a new kappa-core database.
storage
is a random-access-storage function, or a string. If a string is given, random-access-file is used with that string as the filename.opts
include:
valueEncoding
: a string describing how the data will be encoded.multifeed
: A preconfigured instance of multifeedGet or create a local writable log called name
. If it already exists, it is
returned, otherwise it is created. A writer is an instance of
hypercore.
Fetch a log / feed by its public key (a Buffer
or hex string).
An array of all hypercores in the kappa-core. Check a feed's key
to find the
one you want, or check its writable
/ readable
properties.
Only populated once core.ready(fn)
is fired.
Install a view called name
to the kappa-core instance. A view is an object of
the form
// All are optional except "map"
{
// Process each batch of entries
map: function (entries, next) {
entries.forEach(function (entry) {
// ...
})
next()
},
// Your useful functions for users of this view to call
api: {
someSyncFunction: function (core) { return ... },
someAsyncFunction: function (core, cb) { process.nextTick(cb, ...) }
},
// Save progress state so processing can resume on later runs of the program.
// Not required if you're using the "kappa-view" module, which handles this for you.
fetchState: function (cb) { ... },
storeState: function (state, cb) { ... },
clearState: function (cb) { ... }
// Runs after each batch of entries is done processing and progress is persisted
indexed: function (entries) { ... },
// Number of entries to process in a batch
maxBatch: 100,
}
NOTE: The kappa-core instance core
is always passed as the first parameter
in all of the api
functions you define.
version
is an integer that represents what version you want to consider the
view logic as. Whenever you change it (generally by incrementing it by 1), the
underlying data generated by the view will be wiped, and the view will be
regenerated again from scratch. This provides a means to change the logic or
data structure of a view over time in a way that is future-compatible.
The fetchState
, storeState
, and clearState
functions are optional: they
tell the view where to store its state information about what log entries have
been indexed thus far. If not passed in, they will be stored in memory (i.e.
reprocessed on each fresh run of the program). You can use any backend you want
(like leveldb) to store the Buffer
object state
. If you use a module like
kappa-view, it will handle state
management on your behalf.
indexed
is an optional function to run whenever a new batch of entries have
been indexed and written to storage. Receives an array of entries.
Wait until all views named by viewNames
are caught up. E.g.
// one
core.ready('sum', function () { ... })
// or several
core.ready(['kv', 'refs', 'spatial'], function () { ... })
If viewNames is []
or not included, all views will be waited on.
Pause some or all of the views' indexing process. If no viewNames
are given,
they will all be paused. cb
is called once the views finish up any entries
they're in the middle of processing and are fully stopped.
Resume some or all paused views. If no viewNames
is given, all views are
resumed.
Create a duplex replication stream. opts
are passed in to
multifeed's API of the same name.
Ensure that isInitiator
to true
to one side, and false
on the other. This is necessary for setting up the encryption mechanism.
Event emitted when an error within kappa-core has occurred. This is very important to listen on, lest things suddenly seem to break and it's not immediately clear why.
With npm installed, run
$ npm install kappa-core
Here are some useful modules that play well with kappa-core for building materialized views:
kappa-core is built atop two major building blocks:
hypercore provides some very useful superpowers:
Building views in arbitrary sequence is more challenging than when order is known to be topographic or sorted in some way, but confers some benefits:
kappa-core is built atop ideas from a huge body of others' work:
ISC
[git-shallow]: https://www.git-scm.com/docs/gitconsole.log(one#gitconsole.log(one---depthltdepthgt) [kappa]: http://kappa-architecture.com
FAQs
Minimal peer-to-peer database, based on kappa architecture.
The npm package kappa-core receives a total of 100 weekly downloads. As such, kappa-core popularity was classified as not popular.
We found that kappa-core demonstrated a not healthy version release cadence and project activity because the last version was released a year ago. It has 6 open source maintainers collaborating on the project.
Did you know?
Socket for GitHub automatically highlights issues in each pull request and monitors the health of all your open source dependencies. Discover the contents of your packages and block harmful activity before you install or update your dependencies.
Security News
Snyk's use of malicious npm packages for research raises ethical concerns, highlighting risks in public deployment, data exfiltration, and unauthorized testing.
Research
Security News
Socket researchers found several malicious npm packages typosquatting Chalk and Chokidar, targeting Node.js developers with kill switches and data theft.
Security News
pnpm 10 blocks lifecycle scripts by default to improve security, addressing supply chain attack risks but sparking debate over compatibility and workflow changes.